ارزیابی ژئوشیمیایی عناصر کمیاب ونادر خاکی با استفاده از تحلیل عاملی مرحله ای و مدل سازی فراکتالی در شیل های نفتی قالیکوه غرب ایران

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران

2 استاد، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران

3 کارشناسی ارشد، شرکت ملی نفت ایران

چکیده

محدوده قالی کوه در 35 کیلومتری شهرستان الیگودرز، استان لرستان، غرب ایران قرار دارد. شیل‌های نفتی قالی کوه در زاگرس مرتفع و در دو سازند گرو و سرگلو گسترش دارند. این شیل‌های نفتی در دو سازند سرگلو و گرو با سن تریاس بالایی و ژوراسیک پایینی قرار گرفته‌اند. سازند سرگلو شامل مجموعه‌ای از رسوبات شیلی و سنگ آهک‌های رس‌‌‌‌‌‌‌‌‌دار است. سازند گرو متشکل از افق شیل نفتی با ضخامت‌های متفاوتی از نهشته‌های آهک نازک تا متوسط لایه و شیل‌های آمونیت‌دار و گرهک‌های لایه‌ای چرتی سیاه رنگ است. برای بررسی غنی‌شدگی، ارتباط عناصر معدنی با مواد آلی، تشخیص مناطق دارای کانی‌سازی و تعیین حدود آستانه عناصر کمیاب و نادر خاکی، 53 نمونه شیل نفتی از دو سازند گرو و سرگلو انتخاب شدند. این نمونه‌ها با استفاده از روش‌های XRD، XRF، ICP-MS و Rock-Eval مورد تجزیه ژئوشیمیایی قرار گرفتند، سپس با استفاده از روش تحلیل عاملی و مدلسازی فراکتالی نسبت به پردازش داده‌ها اقدام شد. بر پایه نتایج به دست آمده از نمونه‌ها و پردازش داده‌ها مشخص شد که سازند سرگلو با میزان میانگین TOC=13.27% و سازند گرو با میانگین TOC=18.13%، آنومالی قوی از مواد آلی را در شمال غرب و مرکز نشان می‌دهند. مدلسازی فراکتالی عیار- تعداد نشان‌ داد که عناصر Co، Mo، Ni، Pb و U آنومالی قابل توجهی دارند. همچنین روش تجزیه فاکتوری مرحله‌ای (SFA) نشان داد که همبستگی قابل توجهی بین عناصر آنومال با TOC وجود دارد. ترسیم نقشه‌های عنصری نشان‌ داد که آنومالی عناصر Co و Pb در مرکز و جنوب شرق و Mo, Ni در شمال غرب و مرکز، U در مرکز، V, REE در شمال غرب قرار دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemical Evaluation of Rare Earth Elements Using Step Factor Analysis and Fractal Modeling in Qalikouh Oil Shale in Western Iran

نویسندگان [English]

  • A. Pourshaban 1
  • M. Yazdi 2
  • M.H. Adabi 2
  • M. Daryabandeh 3
1 Ph.D Student, Dept. of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Professor, Dept. of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 M.Sc, Dept. of Geochemistry, Exploration Directorate, National Iranian Oil Company, Iran
چکیده [English]

Qalikouh area is located 35 km southwest of Aligudarz city, Lorestan province, SW of Iran. The area is located in the central part of the Zagros Geological Zone. The oil shales of the area are located in the Upper Triassic and Lower Jurassic of Sargalu and Garau Formations. The Sargalu Formation contains a series of shale, carbonate and clays. Garau Formation includes oil shale horizons with different thicknesses, ammonite shales and black cherty layer. In order to investigate the enrichment ratio and relationship between elements and organic matter, 53 samples of oil shale from Garau and Sargalu formations were selected. The samples were analyzed by XRD, XRF, ICP-MS and Rock-Eval analyzer. Data processing was performed using factor analysis, fractal modeling, stepwise factor analysis and principal component analysis. The data show that Sargalu Formation with average TOC = 13.27% and Garau Formation with average TOC = 18.13%, have high content of organic matter in central and NW of the area. Cconcentration-number fractal modeling showed that the Co, Mo, Ni, Pb and U have significant anomalies. The stepwise factor analysis (SFA) method showed a significant correlation between the anomalous elements and TOC. Geochemical maps showed that the anomalies are located for Co and Pb in the center and SE, for Mo, Ni in the NW and center, for V and REE in the NW, and for U in central part of the area.

کلیدواژه‌ها [English]

  • Oil shale
  • Stepwise factor analysis
  • Fractal modeling
  • Qalikouh area
  • Western Iran
  1. Luik, H., Luik, L., Krasulina, J., and Riisalu, H. (2012). “Upgrading Estonian shale oil bituminous fractions”. Proceedings of the 32nd Oil Shale Symposium: The 32nd Oil Shale Symposium, Colorado School of Mines, Golden, Colorado, October 15-19.
  2. Alfredson, P. G. (1985). “Review of oil shale research in Australia”. In Eighteenth Oil Shale Symposium Proceedings: Golden, Colorado School of Mines Press, 162-175.
  3. Altun,  N. E. (2006). “Oil shales in the world and Turkey; reserves, current situation and future prospects: a review”. Oil Shale, 23(3): 211-227.
  4. Turcotte, D. L. (1996). “Fractals and Chaos in Geophysics, second ed”. Cambridge University Press, Cambridge UK, 81-99.
  5. Liu, W., Yao, J., Tong, J., Qiao, Y., and Chen, Y. (2018). “Organic matter accumulation on the Dalong  Formation (Upper Permian) in western Hubei, South China: Constraints from multiple geochemical proxies and pyrite morphology”. Palaeogeography, Palaeoclimatology, Paleoecology, 514: 677-689
  6. Bai, Y., Lv, Q., Liu, Z., Sun, P., Xu, Y., Meng, J., Meng, Q., Xie, W., Wang, J., and Wang, K. (2020). “Major, trace and rare earth element geochemistry of coal and oil shale in the Yuqia area, Middle Jurassic Shimengou Formation, northern Qaidam Basin”. Oil Shale, 37(1):1-31
  7. Bai, F., Guo, W., Lü, X., Liu, Y., Guo, M., Li, Q. and Sun, Y. (2015). “Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data”. Fuel, 146: 111-8. DOI: https://doi. org/10.1016/j.fuel.2014.12.073.
  8. Wang, J., Zhou, L., Mi, J., Ma, C., Yang, H., Lei, H., Chen, J., and Ren, J. (2019). “Trace Elemental Geochemistry and Depositional Environment of Shale Oil Reservoir Rocks within the Permian Lucaogou Formation, Jimusaer Sag”. IOP Conf. Series: Earth and Environmental Science, 101-108.
  9. Wang, Q. F., Deng, J., Wan, L., Zhao, J., Gong, Q. J., Yang, L. Q., Zhou, L., and Zhang, Z. J. (2008). “Multifractal analysis of the element distribution in skarn-type deposits in Shizishan Orefield in Tongling area, Anhui province, China”. Acta Geologica Sinica, 82: 896-905.
  10. Wang, D. M., Xu, Y. M., He, D. M., Guan, j., and Zhang, O. M. (2009). “Investigation of mineral composition of oil shale”. Asia-Pacific Journal of Chemical Engineering, 4: 691-697.
  11. Rasouli, A., Shekarifard, A., Jalali Farahani, F., Kök, M., Daryabandeh, M., and Rashidi, M. (2015). “Occurrence of highly organic matter-rich deposits (Middle Jurassic to Lower Cretaceous) from Qalikuh locality, Zagros Basin, South-West of Iran: A possible oil shale resource”.  International Journal of Coal Geology, 143: 34-42
  12. Shi, J., and Wang, C. (1998). “Fractal analysis of gold deposits in China: implication for giant deposit exploration”. Earth Sciences Journal of China University of Geosciences, 23: 616-618. (In Chinese with English Abstract).
  13. Smith, W. D. (1991). “Composition and depositional environment of major Eastern Canadian Oil shale”. International Journal of Coal Geology.19: 385-438
  14. Niocexp. (2011). “Petroleum geochemistry of oil shales (Middle Jurassic-Lower Cretaceous) from West Iran”. Project Report, pp. 700. (In Persian).
  15. Fereidoni, M., Lotfi, M., Rashidnejad, N., and Rashidi, M. (2018). “Evaluate geochemical trace elements of Qalikuh oil shale (Southwest Aligoodarz) using elemental analysis and rock eval pyrolysis”. Journal of Geosciences. 98: 171-180. (In Persian).
  16. Rasouli, A., Shekarifard, A., Jalali Farahani, F., Kök, M., Daryabandeh, M., and Rashidi, M. (2015). “Occurrence of highly organic matter-rich deposits (Middle Jurassic to Lower Cretaceous) from Qalikuh locality, Zagros Basin, South-West of Iran: A possible oil shale resource”.  International Journal of Coal Geology, 143: 34-42
  17. Fereidoni, M., Lotfi, M., Rashidnejad, N., and Rashidi, M. (2016). “Using geochemical studies to determine the correlation between trace elements and organic and inorganic parameters in Ghalikooh oil shale’s”. Scientific Journal of Exploration & Production Oil & Gas, 131: 55-64. (In Persian).
  18. Agard, P., Omrani, J., Jolivel, L., Whitechurch, H., Vrielynck, B., Spakman, W., and Wortel, R. (2011). “Zagros orogeny: a subduction-dominated process”. Geological Magazine, 148(5-6): 692-725.
  19. Falcon, N. L. (1974). “Southern Iran; Zagros mountains”. In Mesozoic-Cenozoic orogenic belts, Data for orogenic studies: Alpine-Himalayan Orogenes, Geological Society of London, Special Publication, 4: 199-211.
  20. Alavi, N. M. (1994). “Tectonic of the Zagros, orogenic belt of Iran, new data and interpretation”. Tectonophysics, 299: 211-238.
  21. Hawkes, H. E., and Webb, J. S. (1962). “Geochemistry in mineral exploration”. New York: Harper & Row, pp. 415.
  22. Hawkes, H. E., and Webb, J. S. (1979). “Geochemistry in mineral exploration”. 2nd Edn. Academic Press, New York, pp. 657.
  23. Yazdi, M. (2012). “Geological and geochemical features of Alborz Basin coal deposits”. Journal of Sciences, Islamic Republic of Iran, 23(2): 163-169.
  24. Yazdi, M. (2002). “Conventional methods in geochemical explorations”. Shahid Beheshti University, Tehran, pp. 197. (In Persian).
  25. Kumru, M., and Bakac, M. (2003). “R-mode factor analysis applied to the distribution of elements in soils from the Aydın basin, Turkey”. Journal of Geochemical Exploration, 77(2-3): 81-91.
  26. Ots, A. (2007-0212). “Estonian oil shale properties and utilization in power plants”. Energetika, Lithuanian Academy of Sciences Publishers, 53(2): 8-18.
  27. Van Helvoort, P.-J., Filzmoser, P., and van Gaans, P. F. (2005). “Sequential Factor Analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, The Netherlands)”. Applied Geochemistry, 20(12): 2233-2251.
  28. Sun, X., Deng, J., Gong, Q., Wang, Q., Yang, L., and Zhao, Z. (2009). “Kohonen neural network and factor analysis based approach to geochemical data pattern recognition”. Journal of Geochemical Exploration, 103(1): 6-16.
  29. Stocklin, J. (1968). “Structural History and Tectonic of Iran: A Review”. American Association of Petroleum Geologists Bulletin, USA, 52: 1229-1258.
  30. Rezaei, S., Lotfi, M., Afzal, P., Jafari, M. R., and Meigoony, M. S. (2015). “Delineation of Cu prospects utilizing multifractal modeling and stepwise factor analysis in Noubaran 1: 100,000 sheet, Center of Iran”. Arabian Journal of Geosciences, 8(9): 7343-7357.
  31. Shamseddin Meigoony, M., Afzal, P., Gholinejad, M., Yasrebi, A. B., and Sadeghi, B. (2014). “Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1: 100,000 sheet, Central Iran”. Arabian Journal of Geosciences, 7(12): 5333-5343.
  32. Wilkinson, R. (2008). “Queensland oil shale project still in the wings”. Oil & Gas Journal, PennWell Corporation, pp. 106.
  33. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E. J. M. (2012). “Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping”. Journal of Geochernical Exploration, 115: 24-35.
  34. Parsa, M., Maghsoudi, A., Yousefi, M., and Sadeghi, M. (2016). “Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran”. Journal of Geochemical Exploration, 165: 111-124.
  35. Johnson, R. A., and Wichern, D. W. (2002). “Applied multivariate statistical analysis”. Prentice hall Upper Saddle River, New Jersey, pp. 800.
  36. Krumbein, W. C., and Graybill, F. A. (1965). “An introduction to statistical models in geology”. McGraw-Hill, pp. 475.
  37. Treiblmaier, H., and Filzmoser, P. (2010). “Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research”. Information & Management, 47(4): 197-207.
  38. Zuo, R. (2011a). “Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China”. Applied Geochemistry, 26: S271-S273.
  39. Filzmoser, P., Hron, K., and Reimann, C. (2009). “Principal component analysis for compositional data with outliers”. Environmetrics: The Official Journal of the International Environmetrics Society, 20(6): 621-632.
  40. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zia Zarifi, A., Foster, P., and Yasrebi, A. B. (2016). “Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis”. Journal of African Earth Sciences, 119: 139-149.
  41. Reimann, C., Filzmoser, P., and Garrett, R. G. (2002). “Factor analysis applied to regional geochemical data: problems and possibilities”. Applied Geochemistry, 17(3): 185-206.
  42. Afzal, P., Yasrebi, A. B., Daneshvar Saein, L., and Panahi, S. (2017). “Prospecting of Ni mineralization based on geochemical exploration in Iran”. Journal of Geochemical Exploration, 181: 294-304.
  43. Tripathi, V. S. (1979). “Factor analysis in geochemical exploration”. Journal of Geochemical Exploration, 11(3): 263-275.
  44. Shamseddin Meigooni, M., Lotfi, M., Afzal, P., Nezafati, N., and Kargar Razi, M. (2020). “Detection of rare earth element anomalies in Esfordi phosphate deposit of Central Iran, using geostatistical-fractal simulation”. Geopersia. DOI: 10.22059/geope.2020.296123.648526.
  45. Zuo, R. (2011b). “Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)”. Journal of Geochemical Exploration, 111(1-2): 13-22.
  46. Hassanpour, S., and Afzal, P. (2013). “Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran”. Arabian Journal of Geosciences, 6(3): 957-970.
  47. Lima, A., De Vivo, B., Cicchella, D., Cortini, M., and Albanese, S. (2003). “Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region”. Applied Geochemistry, 18(12): 1853-1865.
  48. Afzal, P., Aramesh Asl, R., Adib, A., and Yasrebi, A. B. (2015). “Application of fractal modelling for Cu mineralisation reconnaissance by ASTER multispectral and stream sediment data in Khoshname area, NW Iran”. Journal of the Indian Society of Remote Sensing-Springer, 43: 121-132. DOI: https://doi.org/10.1007/s12524-014-0384-6.
  49. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P., and Rashidnejad Omran, N. (2011). “Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling”. Journal of Geochemical Exploration, 108: 220-232.
  50. Afzal, P., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., Esfandiari, B., and Fadakar Alghalandis, Y. (2010). “Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system. Central Iran”. Journal of Geochemical Exploration, 104: 34-46.
  51. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E. J. M. (2014). “Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping”. Geochemistry: Exploration, Environment, Analysis, 14(1): 45-58.
  52. Zuo, R., Cheng, Q., and Xia, Q. (2009). “Application of fractal models to characterization of vertical distribution of geochemical element concentration”. Journal of Geochemical Exploration, 102: 37-43.
  53. Mandelbrot, B. B. (1983). “The Fractal Geometry of Nature”. W.H. Freeman, San Francisco, CA. Updated and Augmented Edition.
  54. Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., and Liu, H. (2010). “Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China”. Journal of Geochemical Exploration, 105: 95-105.
  55. Davis, John. C. (2002). “Statistics and data analysis in Geology”. John Wiley and Sons Inc., New York, pp. 638.
  56. Kaiser, H. (1958). “The Varimax criteria for analytical rotation in factor analysis”. Psychometmka, 23(3): 187-200.
  57. Carranza, E. J. M., Zuo, R., and Cheng, Q. (2012). “Fractal/multifractal modelling of geochemical exploration data”. Journal of Geochemical Exploration, 122: 1-3.
  58. Bai, J., Porwal, A., Hart, C., Ford, A., and Yu, L. (2010). “Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China”. Journal of Geochernical Exploration, 104: 1-11.
  59. Li, C. J., Ma, T. H., and Shi, J. F. (2003). “Application of a fractal method relating concentration and distances for separation of geochemical anomalie from background”. Journal of Geochemical Exploration, 77: 167-175.
  60. Afzal, P., Shahbeik, S., Moarefvand, P., Yasrebi, A. B., Zuo, R., and Wetherelt, A. (2014). “The Effect of Estimation Methods on Multifractal Modeling for Mineralized Zone Delineation in the Dardevey Iron Ore Deposit, NE Iran”. Iranian Journal of Earth Sciences, 6(1): 78-90.
  61. Afzal, P., Zia Zarifi, A., Farhadi Khankandi, S., Wetherelt, A., and Yasrebi, B. A. (2012). “Separation of uranium anomalies based on geophysical airborne analysis by using Concentration-Area (CA) Fractal Model, Mahneshan 1: 50000 Sheet, NW IRAN”. Journal of Mining and Metallurgy A: Mining, 48(1): 1-11.
  62. Cerny, B. A., and Kaiser, H. F. (1977). “A study of a measure of sampling adequacy for factor-analytic correlation matrices”. Multivariate Behavioral Research, 12(1): 43-47.
  63. Taylor, S. R., and McLennan, S. H. (1985). “The Continental Crust: Its Composition and Evolution”. Blackwell. Oxford, pp. 312.
  64. Finkelman, R. B. (1993). “The use of modes of occurrence information to predict the removal of the hazardous air pollutants prior to combustion”. Journal of Coal Quality, 12(4): 132-134.
  65. Gulbay, R. K. (2007). “Rhenium and Molybdenum in Tertiary Oil shale deposits in Norhwesthern Anatolia, Turkey”. Department of Geological Engineering Karadeniz Technical University. DOI: 10.3176/oil.2007.3.05.