بررسی تاثیر زاویه‌داری سرمته PDC بر مکانیزم شکست نمونه‌ شبه سنگی بصورت آزمایشگاهی و عددی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی معدن، دانشگاه صنعتی همدان، همدان

2 کارشناسی ارشد، گروه مهندسی معدن، دانشگاه صنعتی همدان، همدان

چکیده

در این مقاله با استفاده از مطالعات آزمایشگاهی و شبیه‌سازی عددی، تاثیر زاویه‌داری سرمته PDC بر مکانیزم شکست نمونه‌های شبه سنگی بررسی شده است. به این منظور، سه جفت سرمته PDC با زاویه برنده صفر، 30 و 60 درجه ساخته شد. 9 نمونه شبه سنگی گچ با ابعاد cm5* cm11 *cm14 آماده‌سازی شد. نسبت گچ به آب، 2 در نظر گرفته شد. برای هر زاویه‌داری سرمته، 3 نمونه گچ تحت آزمایش قرار گرفت. نمونه گچ بالای سرمته‌ها نصب شده و مجموعه‌ها تحت آزمایش تک محوره قرار گرفتند. نرخ بارگذاری mm/min  05/0 است. همزمان با تست‌های آزمایشگاهی، شبیه‌سازی عددی به وسیله نرم‌افزار کد جریان ذره انجام شد. به این ترتیب که ابتدا نرم‌افزار PFC برای گچ کالیبره شد. در مرحله دوم، مدل عددی با ابعاد  cm11 *cm14 آماده شد، سپس هفت جفت سرمته با زاویه‌داری، صفر، 15، 30، 45 و 60 درجه شبیه‌سازی شد و در قسمت تحتانی مدل عددی قرار گرفت. سرمته‌ها با نرخ mm/sec  01/0 به سمت مدل حرکت کرده و باعث شکست مدل می‌شود. نتایج نشان می‌دهد که الگوی شکست نمونه‌ها تابع زاویه‌داری سرمته است. همچنین مقاومت نمونه‌ها توسط الگوی شکست نمونه‌ها کنترل می‌شود. با افزایش زاویه‌داری نمونه، نیروی شکست کاهش می‌یابد. بیشترین نیروی شکست مربوط به زاویه داری صفردرجه و کمترین نیروی شکست مربوط به زاویه‌داری 60 درجه است. الگوی شکست مدل‌های عددی و نمونه‌های آزمایشگاهی یکسان است.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Pdc Cutter Angle on the Failure Mechanism of Rock Like Material Using Experimental Test and Numerical Simulation

نویسندگان [English]

  • V. Sarfarazi 1
  • H. Dehghani 1
  • Sh. Jahanmiri 2
1 Associate Professor, Dept. of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
2 M.Sc, Dept. of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
چکیده [English]

In this paper, the effect of PDC cutter angle on the failure mechanism of rock like materials was investigated using experimental test and numerical simulation. For this purpose, three PDC cutter with different angle were built, i.e. 0°, 30° and 60°. Nine gypsum sample with dimension of 14cm*11cm*5cm were prepared. The ratio of gypsum to water was equal to 2. For each PDC angle, three similar gypsum blocks were tested. The blocks were situated above the PDC cutters and these assemblies were fixed in Uniaxial test machine. The loading rate was 0.05 mm/min. concurrent with experimental test, numerical simulation was performed using particle flow code in two dimension. Firstly calibration of PFC was done using experimental results. Secondly, numerical model with dimension of 14cm*11cm was prepared. Then, five PDC cutter angles were built, i.e. 0°, 15°, 30°, 45° and 60°. These cutters were situated at lower part of the model and move in positive side of y direction by rate of 0.01 mm/min. the results show that failure patterns were affected by PDC angle. Also maximum failure load was controlled by failure pattern. The maximum failure load was decreased by increasing the PDC cutter angle. The maximum failure load was related to angle of 0. The minimum failure load was related to angle of 60. The experimental results were similar to numerical simulations out puts.

کلیدواژه‌ها [English]

  • PFC2D
  • Cutter angle
  • Tensile crack
[1] Carpinteri, M. P. (2007). “Numerical analysis offracture mechanisms and failure modes in bi-layered structural components”. Finite Elements in Analysis and Design, 43: 941-953.
[2] Franca, L. F. P. (2011). “A bit–rock interaction model for rotary–percussive drilling”. International Journal of Rock Mechanics and Mining Sciences, 48: 827-832.
[3] Zhu, L., and Bai, Y. (2012). “Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests”. International Journal of Impact Engineering, 24(3): 142-157.
[4] Sloan, W. (2013). “Three-Dimensional Numerical Investigations of the Failure Mechanism of a Rock Disc with a Central or Eccentric Hole”. Rock Mechanics and Rock Engineering, 39(1): 58-97.
[5] Entacher, E. (2014). “Rock Failure and Crack Propagation Beneath Disc Cutters”. Rock Mechanics and Rock Engineering, 42(3): 111-124.
[6] Gui,Y., Bui ,H. H., Kodikara, J., Zhang, Q., and Zhao, J. (2015). “International Journal of Impact Engineering Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model”. International Journal of Impact Engineering, 32(3): 1-10.
[7] Tian, J. (2015). “Rock-breaking analysis model of new drill bit with tornado-like bottomhole model”. Journal of Mechanical Science and Technology, 29(4): 1745-1752.
[8] Xu, J., Sheikh, A. H., and Xu, C. (2017). “Diamond & Related Materials 3-D Finite element modelling of diamond pull-out failure in impregnated diamond bits”. Diamond and Related Materials, 71: 1-12.
[9] Li, (2018). “The rock breaking mechanism analysis of rotary percussive cutting by single PDC cutter”. Arabian Journal of Geosciences, 11(192): 33-45.
[10] Cheng, Z., and Li, G. (2018). “PDC tools for cutting of rocks”. Journal of Petroleum Science and Engineering, 43(4): 66-81.
[11] Liu, H. (2018). “An overview on advances in computational fracture mechanics of rock”. Geosystem Engineering, 9328: 1-24.
[12] Skea, S. (2018). “An approach for wellbore failure analysis using rock cavings and image processing”. Journal of Rock Mechanics and Geotechnical Engineering, 33(3): 1-14.
[13] Yari, N., and Kapitaniak, M. (2018). “Calibrated FEM modelling of rock cutting with PDC cutter”. 16006: 1-4.
[14] Yingxin, Y., and Lin, M. (2018). “Research on Rock-breaking Mechanism of Cross-cutting PDC Bit 2”. Journal of Science and Engineering, 41(3): 22-35.
[15] Menezes, P. L., and Lovell, M. R. (2014). “Studies on the formation of discontinuous rock fragments during cutting operation”. International Journal of Rock Mechanics and Mining Sciences, 71: 131-142.
[16] Joodi, B., Sarmadivaleh, M., Rasouli, V., and Nabipour, A. (2012). “Simulation of the cutting action of a single PDC cutter using DEM”. Petroleum and Mineral Resources, 81: 143-150.
[17] Richard, T. (1999). “Determination of rock strength from cutting tests”. MSc Thesis, University of Minnesota.
[18] Richard, T., Detournay, E., Drescher, A., Nicodeme, P., and Fourmaintraux, D. (1998). “The scratch test as a means to measure strength of sedimentary rocks. In: Proceedings of the SPE/ISRM conference on rock mechanics in petroleum engineering”. Trondheim, Norway: Society of Petroleum Engineers, 111-124.
[19] Richard, T., Dagrain, F., Poyol, E., and Detournay, E. (2012). “Rock strength determination from scratch tests”. Engineering Geology, 147e148: 91-10.
[20] He, X., and Xu, C. (2015). “Discrete element modelling of rock cutting: from ductile to brittle transition”. International Journal for Numerical and Analytical Methods in Geomechanics, 39: 1331-51.
[21] He, X., and Xu, C. (2016). “Specific energy as an index to identify the critical failure mode transition depth in rock cutting”. Rock Mechanics and Rock Engineering, 49: 1461-78.
[22] He, X., Xu, C., Peng, K., and Huang, G. (2017). “Simultaneous identification of rock strength and fracture properties via scratch test”. Rock Mechanics and Rock Engineering, 50: 2227-34.
[23] Huang, H., and Detournay, E. (2008). “Intrinsic length scales in tool-rock interaction”. International Journal of Geomechanics, 8(1): 39-44.
[24] Huang, H., and Detournay, E. (2013). “Discrete element modeling of tool-rock interaction. II: rock indentation”. International Journal for Numerical and Analytical Methods in Geomechanics, 37: 1930-47.
[25] Huang, H., Lecampion, B., and Detournay, E. (2013). “Discrete element modeling of tool-rock interaction. I: rock cutting”. International Journal for Numerical and Analytical Methods in Geomechanics, 37: 1913-29.
[26] Mohammadnejad, M. (2020). “GPGPU-parallelised hybrid finite-discrete element modelling of rock chipping and fragmentation process in mechanical cutting”. Journal of Rock Mechanics and Geotechnical Engineering, 12: 310-325.
[27] Potyondy, D. O., and Cundall, P. A. (2004). “A bonded-particle model for rock”. International Journal of Rock Mechanics and Mining Sciences, 41: 1329-1364.