آشکار سازی آنومالی های عناصر فلزی ناحیه بالوقیه به روش دورسنجی و مقایسه نتایج با داده های ژئوشیمی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل

2 دانشجوی کارشناسی ارشد، گروه مهندسی معدن، دانشکده مهندسی، دانشگاه بیرجند، بیرجند

3 دانشیار، گروه مهندسی معدن، دانشکده مهندسی، دانشگاه بیرجند، بیرجند

چکیده

کانسار‌های فلزی جایگاه ویژه‌ای در میان منابع معدنی دارند و برای شناسایی آنها مطالعات فراوانی انجام شده که اغلب با تلفیق نتایج حاصل از روش‌های مختلف اقدام به شناسایی هرچه بهتر این کانسارها شده است. در این بین می‌توان به مطالعات دورسنجی و ژئوشیمیایی اشاره کرد که نقش عمده‌ای در به نقشه درآوردن آلتراسیون‌های سطحی مرتبط با کانسارهای فلزی داشته‌اند. محدوده شمال غرب ایران با داشتن معادن فلزی فعال و تعداد زیادی از ذخایر بالقوه جزو مناطق مستعد از نظر ذخیره‌های فلزی است. یکی از مناطق مورد توجه برای مطالعات اکتشافی در شمال غرب ایران، منطقه بالوقیه است که منطقه مورد مطالعه در این تحقیق است. در این مطالعه ابتدا اجزای خالص یا اعضای انتهایی با استفاده از روش شاخص خلوص پیکسل استخراج شده و با طیف‌های استاندارد USGS مقایسه شدند. بعد از تخمین فراوانی اعضای انتهایی با استفاده از روش فیلترینگ تطبیق یافته، نقشه کلاس‌بندی یا پراکندگی کانی‌ها با اجرای تکنیکی جدید به نام ترشولد شناور بر روی نقشه‌های فراوانی اعضای انتهایی تعیین گردید. با این روش که از اطلاعات کانی‌شناسی منطقه نیز در کلاس‌بندی استفاده می‌کند، فقط مناطق با اهمیت بالا کلاس‌بندی می‌شوند. نتایج بررسی داده‌های استر آلتراسیون‌های آرژلیک و آرژلیک پیشرفته را در بخش میانی متمایل به غرب منطقه نمایان ساخته است. در ادامه با انجام آنالیز مولفه اصلی مقاوم بر روی داده‌های ژئوشیمیایی منطقه ارتباط عناصر طلا با آرسنیک و آنتیموان در محل آلتراسیون‌های منطقه مشخص گردید. در نهایت با ترکیب نتایج دو رویکرد دورسنجی و تحلیل ژئوشیمیایی به روش آنالیز مولفه اصلی مقاوم می‌توان گفت که کانی‌سازی اپی‌ترمال طلا از محتمل‌ترین موارد در منطقه است و می‌توان نتیجه گرفت که نوع سولفید بالای کانی‌سازی اپی‌ترمال در منطقه اتفاق افتاده است. در پایان محدوده اطراف دو گسل متقاطع در غرب منطقه برای مطالعات تفصیلی پیشنهاد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of the Metallic-Element Anomalies in Baluqaya Region Using Remote Sensing and Comparison of the Results with Geochemical Data

نویسندگان [English]

  • T. Nouri 1
  • B. Beiglari 2
  • A. Aryafar 3
1 Assistant Professor, Faculty of Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
2 M.Sc Student, Dept. of Mining Engineering, Faculty of Engineering, Universsity of Birjand, Birjand, Iran
3 Associate Professor, Dept. of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
چکیده [English]

Northwestern part of Iran is one of the important metal bearing zones and the Baluqaya region which is one of the interesting parts of this area, was selected as the study area. In this research the endmembers were extracted from ASTER dataset and then were compared with spectral library to find matching reference minerals for them. Subsequently, the abundances of endmembers were exracted using the matched filtering technique. Then, the classification and distribution maps of minerals were extracted by implementing the floating threshold as a novel technique on endmembers abundance maps. The mineralogical data of the study area are also involved in the floating threshold method. This method classifies areas with high abundance values of endmembers that probabily have high potential for mineralization. The results delineated argillic and advanced argillic alterations at the midwest of the study area. By performing of robust principal component analysis (RPCA) on ICP-MS geochemical data, correlation of gold concentrations with that of antimony and arsenic was detected in the remote sensing derived alteration area. Finally, it is concluded that a possible high sulfidation epithermal mineralization system has developed in the study area

کلیدواژه‌ها [English]

  • Remote sensing
  • Geochemistry
  • Floating threshold
  • RPCA
  • Hydrothermal alterations
[1] Dostal, J., and Zebri, M. (1978). “Geochemistry of Savalan volcano (northwestern Iran)”. Chemical Geology, 22: 31-42.
[2] Ghalamghash, J., Mousavi, S. Z., Hassanzadeh, J., and Schmitt, A. K. (2016). “Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran)”. Journal of Volcanology and Geothermal Research, 327: 192-207.
[3] Nouri, T., and Oskouei, M. M. (2016). “Processing of Hyperion data set for detection of indicative minerals using a hybrid method in Dost-Bayli. Iran”. International Journal of Remote Sensing, 37(20): 4923-4947.
[4] Nouri, T., and Oskouei, M. M. (2012). “Detection of the geothermal alterations and thermal anomalies by processing of remote sensing data, Sabalan, Iran”. 33rd Asian Conference on Remote Sensing, November 26-30, Pattaya Thailand.
[5] Fotouhi, M. (1994). “Evaluation of Geothermal Potential of Sabalan Region, Iran”. R.Iran. Ministry of Energy, Report No. 3
[6] Bogie, I., Cartwright, A. J., Khosrawi, K., Talebi, B., and Sahabi, F. (2000). “The Meshkin Shahr geothermal prospect, Iran”. Proceedings, World Geothermal Congress, 997-1002.
[7] Mia, M. B., and Fujimitsu, Y. (2012). “Mapping hydrothermal altered mineral deposits using Landsat7 ETM+ image in and around Kuju volcano, Kyushu, Japan”. Journal of Earth System Science, 121(4): 1049-1057.
[8] Bedini, E., Van Der Meer, F., and Van, F. (2009). “Ruitenbeek Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain”. International Journal of Remote Sensing, 30(2): 327-348.
[9] Gabr, S., Ghulam, A., and Kusky, T. (2010). “Detecting areas of high-potentialgold mineralization using ASTER data”. Ore Geology Reviews, 38: 59-69.
[10] Hunt, G. R., and Ashley, P. (1979). “Spectra of altered rocks in the visible and near infrared”. Economic Geology, 74: 1613-1629
[11] Pour, B. A., Hashim, M., and Marghany, M. (2011). “Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran”. International Journal of the Physical Sciences, 6(4): 917-929.
[12] Rowan, L. C., Schmidt, R. G., and Mars, J. C. (2006). “Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data”. Remote Sensing Environment, 104: 74-87.
[13] Martín, G., and Plaza, A. (2012). “Spatial-Spectral Preprocessing Prior to Endmember Identification and Unmixing of Remotely Sensed Hyperspectral Data”. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing, 5(2): 380-395.
[14] Plaza, J., and Hendrix, E. M. T. (2011). “On endmember identification in hyperspectral images without pure pixels: a comparison of algorithms”. Journal of Mathematical Imaging and Vision, 42: 163-175.
[15] Bedini, E. (2020). “The use of hyperspectral remote sensing for mineral exploration: a review”. Journal of Hyperspectral Remote Sensing, 7(4): 189-211. DOI: 10.29150/jhrs.v7.4.p189-211.
[16] Gao, L., Yao, D., Li, Q., Zhuang, L., and Bioucas-Dias, J. (2017). “A New Low-Rank Representation Based Hyperspectral Image Denoising Method for Mineral Mapping”. Remote Sensing, 9: 1145.
[17] Hirai, A., and Tonooka, H. (2019). “Mineral discrimination by combination of multispectral image and surrounding hyperspectral image”. Journal of Applied Remote Sensing, 13(2): 024517.
[18] Kruse, F., Baugh, W., and Perry, S. (2015). “Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping”. Journal of Applied Remote Sensing, 9(1): 096044.
[19] O’Donnell, R., and Partington, G. (2011). “Resource assessment using GIS modelling of orogenic gold mineralisation potential in New Zealand”. NZ AusIMM Conference Proceedings.
[20] El-Magd, I. A., Mohy, H., and Basta, F. (2015). “Application of remote sensing for gold exploration in the Fawakhir area, Central Eastern Desert of Egypt”. Arabian Journal of Geosciences, 8(6): 3523-3536.
[21] Jimenez-Espinosa, R., Sousa, A. J., and Chica-Olmo, M. (1993). “Identification of geochemical anomalies using principal component analysis and factorial kriging analysis”. Journal of Geochemical Exploration, 46(3): 245-256.
[22] Zuo R., Xia Q., and Wang, H. (2013). “Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization”. Journal of Geochemical Exploration, 28: 202-211.
[23] Filzmoser, P., and Hron, K. (2009). “Correlation analysis for compositional data”. Mathematical Geosciences, 41: 905-919.
[24] Aitchison, J. (1981). “A new approach to null correlations of proportions”. Journal of the International Association for Mathematical Geology, 13(2): 175-189.
[25] Aitchison, J. (1983). “Principal component analysis of compositional data”. Biometrika, 70(1): 57-65.
[26] Aitchison, J. (1984). “The statistical analysis of geochemical compositions”. Journal of the International Association for Mathematical Geology, 16(6); 531-564.
[27] Aitchison, J. (1986). “The statistical analysis of compositional data”. Chapman & Hall, London, pp. 416.
[28] Aitchison, J. (1999). “Logratios and natural laws in compositional data analysis”. Mathematical Geology, 31(5): 563-580.
[29] Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J., and Pawlowsky-Glahn, V. (2000). “Logratio analysis and compositional distance”. Mathematical Geology, 32(3): 271-275.
[30] Buccianti, A., and Pawlowsky-Glahn, V. (2005). “New perspectives on water chemistry and compositional data analysis”. Mathematical Geology, 37(7): 703-727.
[31] Chayes, F. (1960). “On correlation between variables of constant sum”. Journal of Geophysical Research, 65(12): 4185-4193.
[32] Egozcue, J. J., and Pawlowsky-Glahn, V. (2005). “Groups of parts and their balances in compositional data analysis”. Mathematical Geology, 37(7): 795-828.
[33] Egozcue, J. J., and Pawlowsky-Glahn, V. (2016).“What are compositional data and how should they be analyzed?”. Boletin de Estadistica e Investigacion Operativa, 32: 5-29.
[34] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C. (2003). “Isometric logratio transformations for compositional data analysis”. Mathematical Geology, 35(3): 279-300.
[35] Filzmoser, P., Hron, K., and Reimann, C. (2009). “Univariate statistical analysis of environmental (compositional) data: problems and possibilities”. Science of the Total Environment, 407(23): 6100-6108.
[36] Filzmoser, P., Hron, K., and Templ, M. (2018). “Applied Compositional Data Analysis with Worked Examples in R”. Springer, New York.
[37] Miesch, A. (1969). “The constant sum problem in geochemistry Computer applications in the earth sciences”. Springer, 161-176.
[38] Thió-Henestrosa, S., and Martín-Fernández, J. (2005). “Dealing with compositional data: the freeware CoDaPack”. Mathematical Geology, 37(7): 773-793.
[39] Alberti, A., Chiaramonti, P., Batistini, G., Nicoletti, M., Petrucciani, C., and Sinigoi, S. (1976). “Geochronology of eastern Azerbaijan volcanic plateau (North-West Iran)”. Social Italian Mineralogy and Petrology, 32: 579-589.
[40] Jamali, H., Dilek, Y., Daliran, F., Yaghubpur, A., and Mehrabi, B. (2010). “Metallogeny and tectonic evolution of the Cenozoic Ahar–Arasbaran volcanic belt, northern Iran”. International Geology Review, 52(4-6): 608-630.
[41] Rouskov, K., Popov, K., Stoykov, S., and Yamaguchi, Y. (2005). Some applications of the remote sensing in geology by using of ASTER images. Scientific Conference, SES, 10-13 June, Varna, Bulgaria.
[42] Goetz, A. F. H., Rock, B. N., and Rowan, L. C. (1983). “Remote sensing for exploration; an overview”. Economic Geology, 78: 573-590.
[43] Crosta, A. P., Filho, C. R. D. S., Azevedo, F., and Brodie, C. (2003). “Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis”. International Journal of Remote Sensing, 24: 4233-4240.
[44] Plaza, A., Martínez, P., Gualtieri, J. A., and Pérez, M. R. (2002). “Automated identification of endmembers from hyperspectral data using mathematical morphology”. Image and signal processing for remote sensing VII, Proceedings of SPIE, 4541: 278-287.
[45] Amer, R., Mezayen, A. E., and Hasanein, M. (2016). “ASTER spectral analysis for alteration minerals associated with gold mineralization”. Ore Geology Reviews, 75: 239-251
[46] Mars, J. C., and Row, L. C. (2011). “ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan”. Geosphere, 7(1): 276-289.
[47] Sabbaghi, H., and Moradzadeh, A. (2018). “ASTER Spectral Analysis for Host Rock Associated with Porphyry Copper-molybdenum Mineralization”. Journal of Geological Society of India, 91: 627-638.
[48] Keshava, N. (2003). “A survey of spectral unmixing algorithms”. Lincoln Laboratory Journal, 14(1): 55-78.
[49] Mezned, N., Abdeljaoued, S., and Boussema, M. R. (2007). “ASTER Multispectral Imagery for Spectral Unmixing based Mine Tailing Cartography in the North of Tunisia”. Paper Presented at the Annual Meeting for the Remote Sensing & Photogrammetry Society, Newcastle Upon Tyne, UK, September 11-14.
[50] Ito, A., and Wagai, R. (2017). “Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies”. Scientific Data, 4: 170103,
[51] Rocha, W. F. C., Nogueira, R., Silva, G. E. B., Queiroz, S. M., and Sarmanho, G. F. (2012). “A comparison of three procedures for robust PCA of experimental results of the homogeneity test of a new sodium diclofenac candidate certified reference material”. Microchemical Journal, 109: 112-116.
[52] Filzmoser, P., Hron, K., and Reimann, C. (2009b). “Principal component analysis for compositional data with outliers”. Environmetrics, 20: 621-632.
[53] Dempster, M., Dunlop, P., Scheib, A., and Cooper, M. (2013). “Principal component analysis of the geochemistry of soil developed on till in Northern Ireland”. Journal of Maps, 9: 373-389.
[54] Rockwell, B. W. (2000). “The Goldfield Mining District, Nevada—An acid-sulfate bonanza gold deposit, in Floyd F. Sabins, ed., Guidebook for Field Trip to the Basin and Range”. Fourteenth International Conference for Applied Geologic Remote Sensing, Las Vegas, Nevada, USA, November 6-8, pp. 22.
[55] Ashley, R. P. (1990). “The Goldfi eld gold district, Esmeralda and Nye Counties, Nevada, in Epithermal Gold Deposits— Part 1”. U.S. Geological Survey Bulletin, 1857: H1-H7.
[56] Ziaii, M., Pouyan, A. A., and Ziaei, M. (2009). “Neuro-fuzzy modeling in mining geochemistry: Identification of geochemical anomalies”. Journal of Geochemical Exploration, 100(1): 25-36.
[57] Ziaii, M., DoulatiArdejani, F., Ziaei M., and Soleymani A. A. (2012). “Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry”. Applied Geochemistry, 27(3): 663-676.
[58] Ziaii, M., Safari, S., Timkin, T., Voroshilov, V., and Yakich, T. (2019). “Identification of geochemical anomalies of the porphyry–Cu deposits using concentration gradient modelling: A case study, Jebal-Barez area, Iran”. Journal of Geochemical Exploration, 199: 16-30.
[59] White, N. C., and Hedenquist, J. W. (1995). “Epithermal gold deposits: styles, characteristics, and exploration”. Economic Geology, Newsletter, 23: 9-13.
[60] Georgieva, S., and Velinova, N. (2012). “Alunite from the advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria: chemistry, morphology and genetic significance”. Geochemistry, Mineralogy and Petrology, 49: 17-31
[61] Aoki, M. (1991). “Mineralogical features and genesis of alunite solid solution in high temperature magmatic-hydrothermal systems”. Geological Survey of Japan, 277: 31-32.
[62] Aoki, M., Comsti E. C., Lazo F. B., and Matsuhisa Y. (1993). “Advanced argillic alteration and geochemistry of alunite in an evolving hydrothermal system at Baguio, northern Luzon, Phillipines”. Resource Geology, 43: 155-164.
[63] Arribas, A., Cunningham, C. G., Rytuba, J. J., Rye, R. O., Kelly, W. C., McKee, E. H., Podwysocky, M. H., and Tosdal, R. M. (1995). “Geology, geochronology, fluid inclusions, and stable isotope geochemistry of the Rodalquilar Au alunite deposit, Spain”. Economic Geology, 90: 795-822.
[64] Deyell, C., and Dipple, G. M. (2005). “Equilibrium mineralfluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio-Pascua belt of Chile and Argentina”. Chemical Geology, 215(1-4): 219-234.
[65] Stoffregen, R. E., and Alpers, C. N. (1992). “Observations on the unit-cell dimensions, H2O contents, and δD values of natural and synthetic alunite”. American Mineralogist, 77: 1092-1098
[66] Rye, R. O., Bethke, P. M., and Wasserman, M. D. (1992). “The stable isotope geochemistry of acidsulfate alteration”. Economic Geology, 87: 225-262.
[67] Bishop, J. L., and Murad, E. (2005). “The visible and infrared spectral properties of jarosite and alunite”. American Mineralogist, 90(7): 1100-1107.
[68] Hedenquist, J. W., Matsuhisa, Y., Izawa, E., White, N. C., Giggenbach, W. F., and Aoki, M. (1994). “Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan”. Economic Geology, 89: 1-30.
[69] Ransome, F. L. (1907). “The association of alunite with gold in the Goldfield district, Nevada”. Economic Geology, 2: 667-692.
[70] Barton, P. B. Jr., and Skinner, B. J. (1979). “Sulfide mineral stabilities, in Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits”. Wiley Interscience, New York, 278-403.
[71] Hemley, J. J., Hostetler, P. B., Gude, A. J., and Mountjoy, W. T. (1969). “Some stability relations of alunite”. Economic Geology, 64: 599-612.
[72] Knight, L. E. (1977). “A Thermochemical Study of Alunite, Enargite, Luzonite, and Tennantite Deposits”. Economic Geology, 72: 1321-1336.
[73] McQueen, K. G. (2005). “Ore deposit types and their primary expressions”. In Regolith Expression of Australian Ore Systems, A Compilation of Exploration Case Histories With Conceptual Dispersion, Process and Exploration Models, Butt, C. R. M., Robertson, I. D. M., Scott, K. M., Cornelius, M., Eds., Cooperative Research Centre for Landscape Environments and Mineral Exploration, Millaa Millaa, Australia, 1-14.
[74] Gray J., and Coolbaugh, M. (1994). “Geology and geochemistry of Summitville, Colorado: An epithermal acid-sulfate deposit in a volcanic dome”. Economic Geology, 89: 1906-1923.
[75] Blakely, R. J., John, D. A., Box, S., Berger, B. R., Fleck, R. J., Ashley, R. P., Newport, G. R., and Heinemeyer, G. R. (2007). “Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington,with Goldfield, Nevada”. Geosphere, 3: 91-107.
[76] Berger, B.R., Anderson, R.E., Phillips, J.D., and Tingley, J.V.; 2005; “Plate-boundary transverse deformation zones and their structural roles in localizing mineralization in the Virginia City, Goldfield, and Silver Star mining districts, Nevada, in Rhoden, H.N., Steininger, R.C., and Vikre, P.G., eds”, Geological Society of Nevada Symposium 2005, Window to the World, Reno, Nevada, May 2005, p. 269–281.
[77] Vikre, P. G., Fleck, R. J., and Rye, R. O. (2005). “Ages and geochemistry of magmatic hydrothermal alunites in the Goldfi eld district, Esmeralda County, Nevada”. U.S. Geological Survey Open-File Report OF2005–1258, 1 sheet.
[78] Oviedo, L., Fuster, N., Tschischow, N., Ribba, L., Zuccone, A., Grez, E., and Aguilar, A. (1991). “General geology of La Coipa precious metal deposit, Atacama, Chile”. Economic Geology, 86: 1287-1300.
[79] Bissig, T., Clark, A.H., Rainbow, A., and Montgomery, A. (2015). “Physio-graphic and tectonic settings of high-sulfidation epithermal gold-silver deposits of the Andes and their controls on mineralizing processes”. Ore Geology Reviews, 65: 327-364.
[80] Yousefi, M., Kamkar-Rouhani, A. and Carranza, E. J. M. (2014). “Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping”. Geochemistry: Exploration, Environment, Analysis, 14: 45-58.
[81] Yousefi, M., and Carranza, E. J. M. (2015). “Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping”. Computers & Geosciences, 74: 97-109.
[82] Yousefi, M., and Nykänen, V. (2016). “Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping”. Journal of Geochemical Exploration,164: 94-106.