[1] Wills, B. A., and Finch, J. (2016). “Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of ore Treatment and Mineral Recovery”. 8th Edition, Butterworth Heinemann.
[2] Gupta, A., and Yan, D. (1995). “Mineral Processing Design and Operation, Flotation, Chapter 16”. Elsevier, 689-748.
[3] Bulatovic, S. M. (2007). “Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores.
[4] Pérez-Garibay, R., Ramírez-Aguilera, N., Bouchard, J., and Rubio, J. (2014). “Froth flotation of sphalerite: Collector concentration, gas dispersion and particle size effects”. Minerals Engineering, 57: 72-78.
[5] Lotter, N. O., and Bradshaw, D. J. (2018). “The Formulation and Use of Mixed Collectors in Sulphide Flotation—Valuable Performance Gains”. Proceedings of the First Global Conference on Extractive Metallurgy, 2018: 2889-2900.
[6] Lotter, N. O., and Bradshaw, D. J. (2010). “The formulation and use of mixed collectors in sulphide flotation”. Minerals Engineering, 23(11-13): 945-951.
[7] Woods, R. (1984). “Electrochemistry of sulphide flotation”. In: Fuerstenau, M. C. (Ed.), Flotation: A. M. Gaudin Memorial Volume, AIME, New York, 298-334.
[8] Corin, K. C., Bezuidenhout, J. C., and O’Connor, C. T. (2012). “The role of dithiophosphate as a co-collector in the flotation of a platinum group mineral ore”. Minerals Engineering, 36: 100-104.
[9] McFadzean, B., Castelyn, D. G., and O’connor, C. T. (2012). “The effect of mixed thiol collectors on the flotation of galena”. Minerals Engineering, 36: 211-218.
[10] McFadzean, B., Mhlanga, S. S., and O’Connor, C. T. (2013). “The effect of thiol collector mixtures on the flotation of pyrite and galena”. Minerals Engineering, 50: 121-129.
[11] Bagci, E., Ekmekci, Z., and Bradshaw, D. (2007). “Adsorption behaviour of xanthate and dithiophosphinate from their mixtures on chalcopyrite”. Minerals Engineering, 20(10): 1047-1053.
[12] Dhar, P., Thornhill, M., and Kota, H. R. (2019). “Comparison of single and mixed reagent systems for flotation of copper sulphides from Nussir ore”. Minerals Engineering, 142: 105930.
[13] Shouji, E., Yokoyama, Y., Pope, J. M., Oyama, N., and Buttry, D. A. (1997). “Electrochemical and Spectroscopic Investigation of the Influence of Acid− Base Chemistry on the Redox Properties of 2, 5-Dimercapto-1, 3, 4-thiadiazole”. The Journal of Physical Chemistry B, 101(15): 2861-2866.
[14] Huang, L., Shen, J., Ren, J., Meng, Q., and Yu, T. (2001). “The adsorption of 2, 5-dimer-capto-1, 3, 4-thiadiazole (DMTD) on copper surface and its binding behavior”. Chinese Science Bulletin, 46(5): 387-389.
[15] El-Shekeil, A. G., Saleh, A. B. A., and Al Shuja’a, O. M. (2008). “Poly [di (2, 5 dimercapto-1, 3, 4-thiadiazole)-metal] Complexes of Group IIB: Synthesis, Characterization and DC Electrical Conductivity”. Journal of Macromolecular Science, Part A, 46(1): 121-129.
[16] Bulatovic, S., Wyslouzil D., and Kan, C. (1997). “Operating Practices In The Beneficiation Of Major Porphyry Copper/Molybdenum Plants From Chile: Innovated Technology And Opportunities, A Review”. International Mineral Processing, 11(4): 313-331.
[17] Huang, L., Tang, F., Hu, B., Shen, J., Yu, T., and Meng, Q. (2001). “Chemical reactions of 2, 5-dimercapto-1, 3, 4-thiadiazole (DMTD) with metallic copper, silver, and mercury”. The Journal of Physical Chemistry B, 105(33): 7984-7989.