شبیه سازی عددی تاثیر زاویه داری درزه و فاصله داری درزه از سینه کار بر مکانیزم شکست ناحیه زیرین برندهTBM

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه صنعتی همدان، همدان

2 کارشناسی ارشد، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه صنعتی همدان، همدان

چکیده

در این مقاله تاثیر زاویه‌داری، فاصله‌داری درزه و چسبندگی سطح درزه بر مکانیزم شکست ناحیه زیرین برنده TBM به وسیله مدلسازی عددی  PFCمورد بررسی قرار می‌گیرد. در ابتدا مدل عددی کالیبره می‌گردد. به این ترتیب که آزمون‌های آزمایشگاهی تک محوره و برزیلی روی نمونه‌های با ابعاد NX انجام می‌شود. این آزمایش‌ها با روش عددی نیز شبیه‌سازی می‌شود و میکروپارامترهای مدل عددی با سعی و خطا به گونه‌ای تعیین می‌شود که رفتار مکانیکی نمونه آزمایشگاهی و مدل عددی یکسان گردد. بعد از کالیبراسیون، مدل عددی با ابعاد 10×11 سانتی‌متر حاوی درزه آماده‌سازی شده است. مدل‌ها یک درزه ممتد با زاویه‌داری°0، °15، °30، °45، °60، °75 و °90 دارند که فاصله این درزه‌ها از سینه‌کار  1،  5/2 و  4 سانتی‌متر است. سه مقدار متفاوت MPa 2/0، MPa 45/0 و MPa 75/0 برای چسبندگی درزه لحاظ گردید. یک برنده U شکل به شعاع 1 سانتی‌متر در تماس با سینه‌کار قرار می‌گیرد و بار محوری را عمود بر سینه‌کار وارد می‌کند. نتایج نشان می‌دهد که آرایش درزه تاثیر بسزایی بر الگوی گسترش ترک دارد. در این مقاله بار اولیه و بار ثانویه شکست معرفی می‌گردد. بار اولیه شکست باعث ایجاد اولین ترک‌ها در زیر برنده می‌شود و بار ثانویه شکست باعث رشد ترک‌های ثانویه در زیر ترک‌های اولیه می‌شود. در شروع دندانه‌گذاری مقدار بار اولیه شکست ماکزیمم است. با ادامه بارگذاری مقدار نیرو افت می‌کند و به مقدار تقریبا ثابت و یا بار ثانویه شکست می‌رسد. آرایش درزه تاثیر مهمی بر بار اولیه و ثانویه شکست دارد. همچنین نتایج نشان می‌دهد که خواص برشی درزه تاثیر بسزایی بر نیروی ثانویه شکست دارد به گونه‌ای که با افزایش خواص برشی، نیروی ثانویه شکست افزایش می‌یابد ولی نیروی اولیه شکست همواره ثابت است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of the Effect of Joint Angle and Joint Distance from Tbm’s Disc on the Rock Fragmentation

نویسندگان [English]

  • V. Sarfarazi 1
  • Sh. Mohamadi Bolban Abad 2
1 assistant prof
2 دانشگاه صنعتی همدان
چکیده [English]

In this paper, the influences of joint angle and joint spacing on the rock fragmentation have been investigated using Particle Flow Code in two dimensions (PFC2D). Firstly calibration of PFC has been done using proper micro parameters. For this purpose, both of the Uniaxial test and Brazilian test have been done on the NX samples. These tests were simulated by numerical method and then the proper micro parameters have been chosen by try and error. After calibration, 21 models with dimension of 11cm ×10 cm consisting one joint have been prepared. The joint angels were 0°, 15°, 30°, 45°, 60°, 75°, and 90°. The joint distances from cutter were 1cm, 2.5 cm and 4cm. Shear properties of joints have been determined using simulation of direct shear test on the modeled joints. One u shape cutter with diameter of 2 cm was in contact to the model surface. Axial force was applied to the model trough cutter.  The results show that both of the joint angle and joint spacing have important effect on the failure pattern and final failure load.

کلیدواژه‌ها [English]

  • U shape cutter
  • Joint angle
  • Joint distance
  • Tensile crack
[1] Gertsch, R., Gertsch, L., and Rostami, J. (2007). “Disc cutting tests in Colorado Red Granite: Implications for TBM performance prediction”. International Journal of Rock Mechanics and Mining Sciences. 44(2): 238-246. DOI: 10.1016/j.ijrmms.2006.07.007.
[2] Gong, Q. M., Jiao, Y. Y., and Zhao, J. (2006). “Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters”. Tunnelling and Underground Space Technology, 21(1): 46-55. DOI: 10.1016/j.tust.2005.06.004.
[3] Tumac, D., and Balci, C. (2015). “Investigations into the cutting characteristics of CCS type disc cutters and the comparison between experimental, theoretical and empirical force estimations”. Tunneling and Underground Space Technology, 45: 84-98.
[4] Snowdon, R. A., Temporal, J., and Hignett, H. J. (1981). “A linear rock cutting rig”. Supplementary Report 588, Tunnels and Underground Pipes Division, Structures Department, Transport and Road Research Laboratory, Crowthorne, Berkshire, 1-11.
[5] Snowdon, R. A., Ryley, M. D., and Temporal, J. (1982). “A study of disc cutting in selected British rocks”. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19(3): 107-121. DOI: 10.1016/0148-9062(82)91151-2.
[6] Cook, N. G. W., Hood, M., and Tsai, F. (1984). “Observations of Crack Growth in Hard Rock Loaded by an Indenter”. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21(2): 97107. DOI: 10.1016/0148-9062(84)91177-X.
[7] Rostami, J., and Ozdemir, L. (1993). “A new model for performance prediction of hard rock TBMs”. In 1993 Rapid Excavation and Tunneling Conference, [1993 RETC], Boston, Massachusetts, June 13-17, 793-809.
[8] Marji, M. F., Nasab, H. H., and Morsedi, A. H. (2009). “Numerical Modeling of Crack Propagation in Rocks under TBM Disc Cutters”. Journal of Mechanics of Materials and Structures, 4(3): 605-627. DOI: 10.2140/jomms.2009.4.605.
[9] Nelson, P. P., Ingraffea, A. R., and O’Rourke, T. D. (1985). “TBM performance prediction using fracture parameters”. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(3): 189192. DOI: 10.1016/0148-9062(85)93234-6.
[10] Cho, J.-W., Jeon, S., Yu, S.-H., and Chang, S.-H. (2010). “Optimum spacing of TBM disc cutters: a numerical simulation using the three-dimensional dynamic fracturing method”. Tunnelling and Underground Space Technology, 25(3): 230-244. DOI: 10.1016/j.tust.2009.11.007.
[11] Moon, T., and Oh, J. (2012). “A study of optimal rock-cutting conditions for hard Rock TBM using the discrete element method”. Rock Mechanics and Rock Engineering, 45(5): 837-849. DOI: 10.1007/s00603-011-0180-3.
[12] Xia, Y., Ouyang, T., Zhang, X., and Luo, D. (2012). “Mechanical model of breaking rock and force characteristic of disc cutter”. Journal of Central South University, 19(7): 1846-1852. DOI: 10.1007/s11771-012-1218-8.
[13] Wang, Z., Wang, W. S., Wang, J., and Liu, C. (2014). “Predicting and verifying forces by using different cutters and spaces”. In Practical Applications of Intelligent Systems, Advances in Intelligent Systems and Computing. 279, Springer-Verlag, Berlin, Heidelberg, 177-186. DOI: 10.1007/978-3-642-54927-4-17.
[14] Lu, F., Zhang, C., Sun, J., Tian, J. X., Liu, M., and Wu, Y. H. (2016). “Study on Rockbreaking Simulation and Experiment of Double Disc Cutter of TBM”. International Journal of Engineering Research in Africa, 23: 80-88. DOI: 10.4028/www.scientific.net/JERA.23.80.
[15] Bruland, A. (1998). “Hard rock tunnel boring”. Doctoral Thesis, Norwegian University of Science and Technology, Trondheim.
[16] Yin, N., Gong, Q., Ma, H., and Zhao, L. (2014). “Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter [J]”. International Journal of Rock Mechanics and Mining Sciences, 72(72): 261-276.
[17] Cundall, P. A. (1971). “A computer model for simulating progressive large scale movements in blocky rock systems”. In Proceedings of the International Symposium on Rock Fracture, Nancy, France, October 1971. International Society for Rock Mechanics (ISRM), 1(11-8): 129-136.
[18] Lu, F., Zhang, C., Sun, J., Tian, J. X., Liu, M., and Wu, Y. H. (2016). “Study on Rock breaking Simulation and Experiment of Double Disc Cutter of TBM”. International Journal of Engineering Research in Africa, 23: 80-88.
[19] Liu, H. (2002). “Numerical simulation of the rock fragmentation process induced by indenters [J]”. International Journal of Rock Mechanics and Mining Sciences, 39(4): 491-505.
[20] Liu, J. (2015). “Influence of confining stress on fracture characteristics and cutting efficiency of TBM cutters conducted on soft and hard rock”. Journal of Central South University, 22(5): 1947-1955.
[21] Liu, J., wang, J., and Wan, W. (2017). “Numerical study of crack propagation in an indented rock specimen [J]”. Computers and Geotechnics, 34(3):33-45. DOI: http://dx.doi.org/10.1016/ j.compgeo.2017.10.014.
[22] Liu, J., Cao P., Du, C., Jiang, Z., and Liu, J. (2015a). “Effects of discontinuities on penetration of TBM cutters [J]”. Journal of Central South University, 22 (9): 3624-3632.
[23] Liu Jie, (2016). “The influence of confining stress on optimum spacing of TBM cutters for cutting granite [J]”. International Journal of Rock Mechanics and Mining Sciences, 88: 165-174.
[24] Liu, J., Cao, P., and Han, D. (2015b). “Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state [J]”. Rock Mechanics and Rock Engineering, 49(4):1-17.
[25] Geng, Q. (2016). “An experimental research on the rock cutting process of the gage cutters for rock tunnel boring machine (TBM)”. Tunnelling and Underground Space Technology, 52: 182-191.
[26] Cao Ping, Lin Qi-bin, Li Kai-hui, Han Dong-ya. (2017). “Effects of joint angle and joint space on rock fragmentation efficiency by two TBM disc cutters [J]”. Journal of Central South University: Science and Technology, 48(5): 1293-1299.
[27] Bejari, ,  Kakaie,  R.,  and Ataei,  M. (2011). “Simultaneous  effects  of  joint  spacing  and  joint orientation  on  the penetration rate of a single disc cutter”. Mining Science and Technology, 21(4): 507-512
[28] Potyondy, D. O., and Cundall, P. A. (2004). “A bonded-particle model for rock”. Mining Science and Technology, 41: 1329-1364.