[1] Masloboev, A., Seleznev, S. G., Svetlov, A. V., and Makarov, D. V. (2018). “Hydrometallurgical Processing of Low-Grade Sulfide Ore and Mine Waste in the Arctic Regions: Perspectives and Challenges”. Minerals, 8(10): 436.
[2] Kamran Khalid, M., Hamuyuni, J., Agarwal, V., Pihlasalo, J., Haapalainen, M., and Lundstroma, M. (2019). “Sulfuric acid leaching for capturing value from copper rich converter slag”. Journal of Cleaner Production, 215: 1005-1013.
[3] Aracena, A., Fernandez, F., Jerez, O. , and Jaques, A. (2019). “Converter slag leaching in ammonia medium/column system with subsequent crystallisation with NaSH”. Hydrometallurgy, 188: 31-37.
[4] Shen, H., and Forssberg, E. (2003). “An overview of recovery of metals from slags”. Waste Management, 23: 933-949.
[5] Balakrishnan, M., Batra, V. S., and Hargreaves, J. S. J. (2014). “Waste from metal processing industries”. In Hargreaves, J. S. J., Pulford, I. D., Balakrishnan, M., Batra, V. S. (Eds.), Conversion of Large Scale Wastes into Value-Added Products. CRC Press, Boca Raton, 23-68
[6] Anand, S., Kantarao, P., and Jena, P. K. (1980). “Recovery of metal values from copper converter and smelter slags by ferric chloride leaching”. Hydrometallurgy, 5: 355-365.
[7] Anand, S., Sarveswara, K., and Jena, P. K. (1983). “Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values”. Hydrometallurgy, 10: 305-312.
[8] Altundogan, H. S., Boyrazli, M., and Tumen, F. (2004). “A study on the sulfuric acid leaching of copper converter slag in the presence of dichromate”. Minerals Engineering, 17: 465-467.
[9] Bese, A. V. (2007). “Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching, Ultrason”. Sonochem, 14: 790-796.
[10] Carranza, F., Iglesias, N., Mazuelos, A., Romero, R., and Forcat, O. (2009a). “Ferric leaching of copper slag flotation tailings”. Minerals Engineering, 22: 107-110.
[11] Yang, Z., Ruilin, M., Wangdong, N., and Hui, W. (2010). “Selective leaching of base metals from copper smelter slag”. Hydrometallurgy, 103: 25-29.
[12] Potysz, A., Lens, P. N. L., Van De Vossenberg, J., Rene, E. R., Grybos, M., Buibaud, G., Kierczak, J., and Van Hullebusch, E. D. (2016a). “Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans”. Applied Geochemistry, 68: 39-52.
[13] Potysz, A., Van Hullebusch, E. D., Kierczak, J., Grybos, M., Lens, P. N. L., and Guibaud, G. (2015). “Copper metallurgical slags - current knowledge and fate: a review, Crit. Rev. Environ”. SciTechnol, 45: 2424-2488.
[14] Khataee, A., Gholami, P., and Vahid, B. (2017). “Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation”. Journal of Industrial and Engineering Chemistry, 50: 86-95.
[15] Chan, J. Y. T., Ang, S. Y., Ye, E. Y., Sullivan, M., Zhang, J., and Lin, M. (2015). “Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets”. Physical Chemistry, Chemical Physics, 17: 25333-25341.
[16] Huang, X., Chen, Y., Walter, E., Zong, M., Wang, Y., Zhang, X., Qafolu, O., Wang, Z., and Kevin,M. R. (2019). “Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles”. Environmental Science And Technology, 53: 10197-10207.
[17] Li, M., Zhand, Y., Wang, Z. H., Yang, J. G., Qiao, S., and Zheng, S. L. (2016). “Extraction of copper, zinc and cadmium from copper–cadmiumbearing slag by oxidative acid leaching process”. Rare Metals, 25: 1-10.
[18] Moravyov, M. I., Fomchenko, N. V., Usoltsev A. V., Vasilyev, E. A., and Kondrateva, T. S. (2012). “Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3”. Hydrometallurgy, 119-120: 40-46.
[19] Urosevic, D. M., Dimitrijevic, M. D., Jankovic, Z. D., and Antik, D. V. (2014). “Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching”. Physicochemical Problems of Mineral Processing, 51: 73-82.
[20] Abou-Yousef, H., El-Sakhawy, M., and Kamel, S. (2005). “Multi-stage Bagasse pulping by using alkali/Caro’s acid treatment”. Industrial Crops and Products, 21: 337-341.
[21] Petrucci, R. H., Herring, F. G., Madura, J. D., and Bissonnette, C. (2016). “General chemistry: principles & modern applications”. Prentice Hall, 11rd Ed., pp. 606.
[22] Kiraci, A., and Yurtseven, H. (2012). “Temperature dependence of the raman frequency, damping constant and the activation energy of a soft-optic mode in ferroelectric barium titanate”. Ferroelectrics,432(1): 14-21.
[23] Addiscott, T. M., and Wagenet, R. J. (1985). “Concepts of solute leaching in soils: a review of modelling approaches”. Journal of Soil Science, 36(3): 411-424.
[24] Tang, Y., Shen, T., and Meng, Z. (2019). “A kinetic study on the mechanisms of metal leaching from the top surface layer of copper aluminates and copper ferrites”. Environmental Geochemistry and Health,41: 2491-2503.
[25] Brauer, G. (1963). “Handbook of preparative inorganic chemistry”. Translation Editing by Reed, F., 5rd Ed., New York, N.Y.: Academic Press, pp. 779.
[26] مظفری، ع.، ساکی، ا.، فقیهی، ع.، فتحینیا، س.؛ 1396؛ "بهینهسازی پارامترهای مؤثر بر حذف آلاینده رنگزای نارنجی اسیدی 7 توسط نانو ذرات مگنتیت با به کارگیری روش مدلسازی رویهی پاسخ و استفاده از نرمافزار مینی تب16". فصلنامه علوم و تکنولوژی محیط زیست، دوره نوزدهم، شماره5، ص 167-157.
[27] Tony, M. A., Mansour, S. A., Tayeb, A. M., and Purcell, P. J. (2018). “Use of a fenton-like process based on nano-haematite to treat synthetic wastewater contaminated by phenol: Process Investigation and Statistical Optimization”. Arabian Journal for Science and Engineering, 43: 2227-2235.
[28] Radovic, M. D., Mitrovic, J. Z., Kostic, M. M., Bojic, D. V., Petrovic, M. M., Najdanovic, S. M., Bojicc, A. L. (2015). “Fenton and photo-Fentonprocesses for the decolorization of reactive dyes. Comparison of ultraviolet radiation/hydrogen peroxide”. Hemijska Industrija, 69(6): 657-665.
[29] Araujo, F. V. F., Yokoyama, L., Teixeira, L. A. C., and Campos, J. C. (2011). “Heterogeneous fenton process using the mineral hematite for the discolouration of a reactive dye solution”. Brazilian Journalof Chemical Engineering, 28(4): 605-616.
[30] Hadjltaief, H. B., Sdiri, A., Galvez, M. E., Zidi, H., Da costa, P., and Ben Zina, M. (2018). “Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process”. ChemEngineering, 24(3): 171-182.
[31] Lin, S. S., and Gurol, M. D. (1998). “Catalytic decomposition of hydrogen peroxide on iron oxides: kinetics, mechanism and implication”. Environmental Science and Technology, 32: 1417.
[32] Kwan, W. P., and Voelker, B. M. M. (2003). “Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems”. Environmental Science and Technology, 37: 1150.
[33] Hayyan, M., Hashim, M. A., and AlNashef I. M. (2016). “Superoxide Ion: Generation and Chemical Implications”. ChemicalReviews, 116(5): 3029-3085
[34] Pierluigi, B., Francesca, L. (2010). “Heterogenized Homogeneous Catalysts for Fine Chemicals roduction” Dordrecht: Springer, ISBN978-90-481-3695-7.
[35] Fukui, T., Murata, K., Ohara, S., Abe, H., Naito, M., and Nogi, K. (2004). “Morphology control of Ni–YSZ cermet anode for lower temperature operation of SOFCs”. Journal of Power Sources, 125 (1): 17-21.
[36] Fathinia, S., Fathinia, M., Rahmani, A. A., and Khataee, A. (2015). “Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process”. Applied Surface Science, 327: 190-200.
[37] Oloubambi, P., Ndlovu, S., and Borode, J. O. (2006). “Sulphuric acid leaching of zinc and copper from Nigerian Complex Sulphide Ore in the presence of hydrogen peroxide”. Journal of the Southern African Institute of Mining and Metallurgy, 106(11): 765-770.
[38] Jiyang, T., Yang, Y., Zhang, B., Huang, Z. (2002). “Kinetics of silver leaching from manganese-silver associated ores in sulfuric acid solution in the presence of hydrogen peroxide”. Metallurgical and Materials Transactions, 33(6): 813-816.
[39] Adebayo, A. O., Ipinmoroti, K. O., and Ajayi, O. O. (2003). “Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulphuric acid medium”. Chemical and Biochemical Engineering Quarterly, 17: 213-218.
[40] Carranza, F., Iglesias, N., Mazuelos, A., Romero, R., and Forcat, O. (2009). “Ferric leaching of copper slag flotation tailings”. Minerals Engineering, 22: 107-110.
[41] Liang, X., Zhong, Y., He, H., Yuan, P., and Zhu, J. (2012). “The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes”. Chemical Engineering Journal, 191: 177-184.
[42] Neuendorf, K. K. E., Mehl, J. P., and Jackson, J. A. (2005). “Glossary of Geology”. Alexandria, Virginia, American Geological Institute, 5rd Ed., pp. 779.
[43] Bayat, M., Sohrabi, M., and Royaee, S. J. (2012). “Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite”. Journal of Industrial and Engineering Chemistry, 18: 957-962.