مطالعه الگوی شکست درزه های ناممتد عمود بر هم زیر بار نقطه ای برنده TBM با آزمون آزمایشگاهی و روش اجزای محدود

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی معدن، دانشگاه صنعتی همدان، همدان

2 کارشناسی ارشد استخراج معدن، گروه مهندسی معدن، دانشگاه صنعتی همدان، همدان

چکیده

در این مقاله،  روش شکست درزه ناممتد عمود بر‌هم با ایجاد بار نقطه‌ای برنده TBM توسط آزمایش‌های آزمایشگاهی و مدل‎سازی عددی مورد بررسی قرار می‌گیرد.  به‎این منظور، 4 نمونه آزمایشگاهی از جنس گچ با ابعاد 10*10*5 سانتی‎متر حاوی درزه ناممتد عمود بر‎هم آماده‎سازی شد. نمونه‌ها دارای دو درزه ناممتد با طول‌های 1 و 2 سانتی‎متر و عمود بر یکدیگر بودند. درزه کوچک‎تر دارای زاویه‌داری0، 45، 90 و 135 درجه نسبت به افق است. این نمونه‌ها زیر اثر بار نقطه‎ای برنده U شکل قرار گرفتند. هم‎زمان با مطالعات آزمایشگاهی، توسط نرم افزار FRANC2D شبیه‌سازی عددی نیز بر روی نمونه‌های حاوی درزه‌های ناممتد عمود برهم انجام شد. به‎طور کلی، 12 مدل عددی که الگوی هندسی آنها شبیه نمونه‌های آزمایشگاهی بود، ساخته شد.  نتایج نشان می‌دهد که آرایش درزه ناممتد T شکل، تاثیر به‌سزایی بر الگوی رشد و گسترش ترک دارد. نمونه در زوایای 45 و 135درجه نسبت به محور اعمال بار، کمترین مقاومت را دارد. با مقایسه الگوی شکست نمونه آزمایشگاهی و مدل عددی، می‌توان نتیجه گرفت که الگوی شکست مشابهی در نمونه آزمایشگاهی و مدل‌‌های عددی به‌وقوع پیوسته است.

کلیدواژه‌ها


عنوان مقاله [English]

Failure Pattern of Perpendicular Non-Persistent Joints Beneath the Point Load of BM’s Cutter Using Experimental Test and Finite Element Method

نویسندگان [English]

  • V. Sarfarazi 1
  • Sh. Mohamadi Bolban Abad 2
1 Associate Professor, Dept. of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
2 M.Sc, Dept. of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
چکیده [English]

In this paper, the failure pattern of non-persistent joint under U shape cutter was studied by experimental test and numerical simulation. For this purpose, 4 gypsum sample with dimension of 5cm*10cm*10cm containing perpendicular non-persistent joint were prepared.  Samples have 2 vertical non-persistent joint with lengths of 1cm and 2 cm. the angle of small joint related to horizontal axis was 0°, 45°, 90° and 135°. This sample was subjected to U shape cutter loading. Concurrent with experimental test, numerical simulation was performed using Franc2d on the non-persistent joint. Totally 12 numerical model was built that some of them have similar configuration with experimental specimens. The results show that perpendicular non-persistent joint configuration has important effect on the failure pattern.  The compressive strengths have minimum value when small joint angle were 45° and 135°. The comparison between experimental results and numerical output shows that the good accordance was established between experimental tests and numerical simulation.

کلیدواژه‌ها [English]

  • U shape cutter
  • Perpendicular non-persistent joints
  • Tensile crack
  • Tunnel boring machine
[1] میرزایی نصیرآباد، ح.، کاکایی، ر.، حسنی، ب.، جلالی، س. م. ا.؛ 1388؛ "ارزیابی دو معیار شکست مبتنی بر ضرایب تمرکز تنش و مولفه های تنش برای پیش بینی جهت انتشار ترک در محیط های شبه سنگی". نشریه علمی پژوهشی مهندسی معدن، دوره چهارم، شماره 8، ص 12-1.
[2] میرزایی نصیرآباد، ح.، کاکایی، ر.، حسنی، ب.؛ 1387؛ "تعیین ضریب تمرکز تنش مود کششی شکستگی های سنگ با استفاده از روش بدون مش گالرکین و برون یابی جابجایی". دومین کنفرانس مهندسی معدن ایران، تهران، ص 190-183.
[3] Mirzaei, H., Kakaie, R., and Hassani, B. (2008). “Determination of Stress Intensity Factors for Jointed Brittle Rock Medium Using Element Free Galerkin  Method”. 5th Asian Rock Mechanics Symposium  (ARMS5), 24-26 November, Tehran, Iran, 2: 1135-1141.
[4] Haeri, H., and Marji, M. F. (2016). “Simulating the crack propagation and cracks coalescence underneath TBM disc cutters”. Arabian Journal of Geosciences, 9(2): 124.
[5] Hosseini_Nasab, H., and Fatehi Marji, M. (2007). “A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting”. Journal of Mechanics of Materials and Structures, 2(3): 439-458.
[6] Marji, M. (1997). “Modelling of cracks in rock fragmentation with a higher order displacement discontinuity method”. Ph.D Thesis in Mining Engineering (Rock Mechanics), 1(1): 167.
[7] Behnia, M., Goshtasbi, K., Marji, M. F., and Golshani (2014). “A Numerical simulation of crack propagation in layered formations”. Arabian Journal of Geosciences, 7(7): 2729-2737.
[8] Marji, M. (2014). “Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method”. International Journal of Solids and Structures, 51(9): 1716-1736.
[9] Marji, M. F. (2015). “Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method”. Journal of Central South University 22(3): 1045-1054.
[10] Hadi, H., Shahriar, K., and Marji Fatehi, M. (2013). “Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method”. ICF13, 33-45.
[11] Haeri, H., Sarfarazi, V., Fatehi Marji, M., and Hedayat, A. (2016). “Experimental and Numerical Study of Shear Fracture in Brittle Materials with Interference of Initial Double Cracks”. Acta Mechanica Solida Sinica, 29(5): 555-566.
[12] Gong, Q. M., and Zhao, J. (2009). “Development of a rock mass characteristics model for TBM penetration rate prediction”. International Journal of Rock Mechanics and Mining Sciences, 46(1):8-18.
[13] Gong, Q. M., Zhao, J., and Jiao, Y. Y. (2005). “Numerical simulation of influence of joint orientation on rock fragmentation process by TBM cutters”. Tunneling and Underground Space Technology, 20(2): 183-191.
[14] Gong, M.,  Jiao,  Y. Y.,  and Zhao,  J.  (2006).  “Numerical  simulation  of  influence  of  joint  spacing  on  rock fragmentation by TBM cutters”. Tunneling and Underground Space Technology, 21(1): 46-55.
[15] Bejari, H., Kakaie, R., and Ataei, M. (2011). “Simultaneous effects of joint spacing and joint orientation on the penetration rate of a single disc cutter”. International Journal of Mining Science and Technology, 21(4): 507-512.
[16] Choi, S. O., and Lee, S. J. (2014). “Three-dimensional numerical analysis of the rock-cutting behavior of a disc cutter using particle flow code”. KSCE Journal of Civil Engineering, 19: 1129-1138.
[17] Yagiz, S. (2007). “Utilizing rock mass properties for predicting TBM performance in hard rock condition”. Tunnelling and Underground Space Technology, 23(3): 326-339.
[18] Zhang, Z., Meng, L., and Sun, F. (2014). “Wear analysis of disc cutters of full face rock tunnel boring machine”. Chinese Journal of Mechanical Engineering, 27: 1294-1300.
[19] Tumac, D., and Balci, C. (2015). “Investigations into the cutting characteristics of CCS type disc cutters and the comparison between experimental, theoretical and empirical force estimations”. Tunnelling and Underground Space Technology, 45: 84-98.
[20] YinN, L-j., Gong, Q-m., Ma, H.-s., and Zhao, J. (2014). “Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter [J]”. International Journal of Rock Mechanics and Mining Sciences, 72(72): 261-276.
[21] Liu, H-y., and Kou, E. (2002). “Numerical simulation of the rock fragmentation process induced by indenters [J]”. International Journal of Rock Mechanics and Mining Sciences, 39(4): 491-505.
[22] Liu, J-s. (2015). “Influence of confining stress on fracture characteristics and cutting efficiency of TBM cutters conducted on soft and hard rock”. Journal of Central South University, 22(5): 1947-1955.
[23] Liu, J. (2016). “The influence of confining stress on optimum spacing of TBM cutters for cutting granite [J]”. International Journal of Rock Mechanics and Mining Sciences, 88: 165-174.
[24] Liu, J., Cao, P., and Han, D-y. (2015b). “Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state [J]”. Rock Mechanics and Rock Engineering, 49(4): 1-17.
[25] Qi, G. (2016). “An experimental research on the rock cutting process of the gage cutters for rock tunnel boring machine (TBM) [J]”. Tunnelling and Underground Space Technology, 52: 182-191.
[26] Mohammadi, S. (2008). “Extended Finite Element Method. Blackwell Publishing Ltd. Sun, J.S., 2011. Numerical simulation of influence factors for rock fragmentation by TBM cutters”. Rock and Soil Mechanics, 32(6): 1891-1897.
[27] Kim, J. H., and Paulino, G. H. (2003). “An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models”. International Journal for Numerical Methods in Engineering, 58: 1457-1497.
[28] Rethore, J., Roux, S., and Hild, F. (2010). “Mixed-mode crack propagation using a Hybrid Analytical and eXtended Finite Element Method”. C. R. Mecanique, 338: 121-126.
[29] Lee, S.-J., and Choi, S. O. (2009). “Numerical Analysis on Fragmentation Mechanism by Indentation of Disc Cutter in a Rock Specimen with a Single Joint”. Tunneling and Underground Space Technology, 19(5): 440-449.
[30] Zhou, F., and Li, H. (2012). “Experimental study of influence of joint space and joint angle on rock fragmentation by TBM disc cutter [J]”. Rock and Soil Mechanics, 33(6): 1640-1646.
[31] Tan, Q., Zhu, Y., Xia Y., Xu, Z., Li, J., and Song J. (2013). “Influence of joint characteristics on rock fragmentation induced by TBM disc cutter [J]”. Journal of Central South University: Science and Technology, 44(10): 4040-4046.
[32] Liu, J., Wang, J., and Wan, W. (2017). “Numerical study of crack propagation in an indented rock specimen”. Computers and Geotechnics, DOI: http://dx.doi.org/10.1016/ j.compgeo.2017.10.014.