پتانسیل یابی منابع سنگ آهن با روش های دورسنجی و مغناطیس سنجی زمینی در محدوده شمال شرق نی ریز فارس

نوع مقاله : علمی-پژوهشی

نویسنده

دانش آموخته کارشناسی ارشد، شرکت زمین فناوران آسیا، شاهرود

چکیده

منطقه مورد مطالعه در شمال شرقی شهرستان نی­ریز و در نزدیکی روستای قوری در استان فارس واقع شده است. از نظر زمین­شناسی واحدها در زون سنندج­– سیرجان و با روند عمومی شمال غربی­– جنوب شرقی قرار دارند. اغلب این واحدها را واحدهای آهکی، واحدهای سرسیت­– کلریت شیست و واحدهای آمفیبولیتی تشکیل می­دهند. در این پژوهش، با استفاده از دو سری داده سنجش­ از دور سنجنده ASTER و مغناطیس­سنجی زمینی برای پتانسیل­یابی و شناسایی مناطق امیدبخش کانه­زایی آهن در محدوده مورد مطالعه پرداخته شده است. با استفاده از داده­های سنجنده ASTER، روش­های ترکیب رنگی کاذب (FCC)، نسبت­گیری باندی (BR)، تحلیل مولفه اصلی (PCA) و روش کمترین مربعات (LS-Fit) استفاده شد و مناطق دارای آلتراسیون­های پروپلیتیکی، کلریتی و فیلیک مشخص شدند که منجر به شناسایی چهار منطقه امیدبخش A، B، C و D تقریبا موازی یکدیگر با روند عمومی شمال ­غرب – جنوب شرق شد. با استفاده از داده­های مغناطیس­سنجی زمینی، روش­های برگردان به قطب (RTP)، ادامه فراسو تا ارتفاع 100 متری، مشتق قائم مرتبه اول، سیگنال تحلیلی و زاویه تیلت (کجی) استفاده شد که کلیه نتایج منجر به شناسایی چهار نوع آنومالی A’، B’، C’ و D’ شد که این چهار نوع آنومالی نیز روند شمال ­غرب–  جنوب ­شرق دارند. نتایج هر دو روش منطبق بر یکدیگرند. آنومالی­های A  و B مربوط به دو دایک و با عمق کم در شمال منطقه و آنومالی­های C و D مربوط به دو توده بزرگ با عمق منشا بیشتر از صد متر در قسمت مرکزی و جنوب منطقه مورد مطالعه شناسایی و اکتشاف شد.

کلیدواژه‌ها


عنوان مقاله [English]

Iron Ore Potential Mapping Using Remote Sensing and Magnetometric Geophysical Surveys in Northeast of Neyriz, Fars Province

نویسنده [English]

  • S. Mojarad
M. Sc, Asia Geo Technology Company, Shahrood, Iran
چکیده [English]

In this study, processing and interpretation methods in remote sensing such as visual and spectral analysis have been performed on the ASTER (advanced spaceborne thermal emission and reflection radiometer) data from northeast of neyriz area, and as a result, the alteration zones in the area have been identified. Then, the results of magnetometric data, using geological information, alteration and mineralization from the have been interpreted. The emergence and expansion of a measuring instrument for geological and mineralogy in the field of mine mineral resources in recent decades are due to the importance of this industry. The study area is located in the northeast of neyriz and near the village of Ghori in Fars province. Geologically, the units of the study area are located in the zone-Sanandaj-Sirjan and with the general northwest-southeastern trend.

کلیدواژه‌ها [English]

  • Remote Sensing
  • Magnetometric
  • ASTER
  • Neyriz
  • Ghori
[1]     Ganiyu, S. A., Badmus, B. S., Awoyemi, M. O., Akinyemi, O. D., and Olurin, O. T. (2012). “Upward continuation and reduction to pole process on aeromagnetic data of Ibadan Area”. South-Western Nigeria, Earth Science Research, 2(1): 66-84.
[2]     Carlson, T. N., and Ripley, D. A. (1997). “On the relation between NDVI, fractional vegetation cover, and leaf area index”. Remote Sensing of Environment, 62(3): 241-252.
[3]     Paterson, N. R., and Reeves, C. V. (1985). “Applications of gravity and magnetic surveys: The state-of-the-art in 1985”. Geophysics, 50(12): 2558-2594.
[4]     Chander, G., Markham, B. L., and Helder, D. L. (2009). “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors”. Remote Sensing of Environment, 113(5): 893-903.
[5]     Siemon, B. (2001). “Improved and new resistivity _ depth profiles for helicopter electromagnetic data”. Journal of Applied Geophysics, 4: 250-269.
[6]     Bishop, J. R., and Lewis, R. J. G. (1992). “Geophysical signatures of Australian volcanic hosted Massive Sulfide deposits”. Economic Geology, 87: 913-930.
[7]     Clark, D. A. (1999). “Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation”. Exploration Geophysics, 30(2): 5-26.
[8]   علوی‌‌پناه،س. ک.؛ 1385؛"کاربرد سنجش از دور در علوم زمین". مؤسسه انتشارات دانشگاه تهران، ص 61-44.
[9]     Silver, E., MacKnight, R., Male, E., Pickles, W., Cocks, P., and Waibel, A. (2011). “LiDAR and hyperspectral analysis of mineral alteration and faulting on the west side of the Humboldt Range, Nevada”. Geosphere, 7(6): 1357-1368.
[10]  Gupta, H. K., and Roy, S. (2003). “Geothermal energy: an alternative resource for the 21st century”. First edition, Elsevier, pp. 279.
[11]  Stöcklin, J. (1968). “Structural history and tectonics of Iran: a review”. American ciation of Petroleum Geologists Bulletin, 52(7): 1229-1258.
[12]    افتخارنژاد، ج.؛ 1395؛"تفکیک بخشهای مختلف ایران از نظر وضع ساختمانی در ارتباط با حوضههای رسوبی". نشریه انجمن نفت، دوره 82،ص 19-28.
[13]   Alavi, M. (1991). “Tectonic map of the Middle East (scale 1:5,000,000)”. Geological Survey of Iran, 24-37.
[14]  Sheikholeslami, M. R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., and Emami, M. H. (2008). “Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran)”. Journal of Asian Earth Sciences, 31: 504-521.
[15]  Noorollahi, Y., Itoi, R., Fujii, H., and Tanaka, T. (2007). “GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan”. Computers & Geosciences, 33(8): 1008-1021.
[16]  Ranjbar, H., Honarmand, M., and Moezifar, Z. (2004). “Application of the Crosta technique for porphyry copper alteration mapping, using ETM data in the southern part of the Iranian volcanic sedimentary belt”. Journal of Asian Earth Sciences, 24: 237–243.
[17]  Tommaso, I. M., and Rubinstein, N. (2007). “Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina”. Ore Geology Reviews, 32: 275-290.
[18]  Crosta, A., and Moore, J. (1989). “Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: a prospecting case history in Greenstone belt terrain”. Proceedings of the 7th ERIM Thematic Conference, Remote Sensing for Exploration Geology, 1173-1187.
[19]  Abrams, M., Hook, S., and Ramachandran, B. (2002). “ASTER User Handbook”.Second ed. JPL Pub-lication Laboratory, California Institute of Technology, pp. 135.
[20]    علوی‌‌پناه. ک.؛ 1382؛"کاربرد سنجش از دور در علوم زمین". مؤسسه انتشارات دانشگاه تهران، چاپ اول، ص 71-53.
[21]  Khaleghi, M., and Ranjbar, H. (2011). “Alteration Mapping for Exploration of Porphyry Copper Mineralization in the Sarduieh area, Kerman Province, Iran. Using ASTER SWIR Data”. Australian Journal of Basic and Applied Sciences, 5(8): 61-69.
[22]  Crosta, A. P., and Moore, J. M. C. M. (1989). “Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain”. In: Wolfe, W. L., and ZISSIS, G. L. (eds). Proceeding of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Calagary, 1173-1187.
[23]  شبانکاره، م.؛ 1386؛"تهیه نقشههای پتانسیل معدنی زون متالوژی کاشان-نائین در محیط GIS با استفاده از شبکه عصبی فازی". پایان‌نامه کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، ص 74-53.
[24]  نوروزی، غ.؛ 1388؛"ژئوفیزیکاکتشافی". انتشارات دانشگاه تهران، ص 78-53.
[25]  Shoham, Y. (1978). “Magnetotelluric geophysical exploration method – review”. American Association of Petroleum Geologists (AAPG Bulletin), 62(11): 241-264.
[26]  Arkani-Hamed, J., and Urquhart, W. E. S. (1990). “Reduction to pole of the North American magnetic anomalie”. Geophysics, 55(2): 218-225.
[27]  Guun, P. J., Madment, D., and Miligan, P. R. (1997). “Interpretation of aeromagnetic data in
area of limited outcrop”
. Journal of Australian Geology and Geophysics (AGSO), 17(2): 175-185.
[28]  Ganiyu, S. A., Badmus, B. S., Awoyemi, M. O., Akinyemi, O. D., and Olurin, O. T. (2012). “Upward continuation and reduction to pole process on aeromagnetic data of Ibadan Area, South-Western Nigeria”. Earth Science Research, 2(1): pp. 66.
[29]  Tarlowski, C., Gunn, P. J., and Mackey, T. (1997). “Enhancements of the magnetic map of Australia”. Journal of Australian Geology and Geophysics (AGSO), 17: 77-82.
[30]   شهری، م. ر.؛1384؛"مبانی اکتشافات ژئوفیزیک". دانشگاه فردوسی مشهد، ص 49-34.
[31]  Neawsuparp, K., Charusiri, P., and Meyers, J. (2005). “New processing of airborne magnetic and electromagnetic data and interpretation for subsurface structures in the Loei area, Northeastern Thailand”. Science Asia, 31: 283-298.
[32]  Adams, J. B., Smith, M. O., and Johnson, P. E. (1986). “Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site”. Journal of Geophysical Research: Solid Earth, 91(B8): 8098-8112.
[33]  Nabighian, M. N. (1972). “The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation”. Geophysics, 37: 507-517.
[34]  Roest, W. R., Verhoef, J., and Pilkington, M. (1992). “Magnetic interpretation using 3-D analytic signal”. Geophysics, 57: 116-125.
[35]  Hsu, S. K., Coppens, D., and Shyu, C. T. (1998). “Depth to magnetic source using thegeneralized analytic signal”. Geophysics, 63: 1947-1957.
[36]  Cooper, G. R. J., and Cowan, D. R. (2006). “Enhancing potential field data using filters based on the local phase”. Computers & Geosciences, 32: 1585-1591.
[37]  Verduzco, B., Fairhead, D. J., Chris, M. G., and Chris, M. (2004). “New insights into magnetic derivatives for structural mapping”. The Leading Edge, 23(2): 116-119.
[38]  Miller, H. G., and Singh, V. (1994). “Potential field tilt, a new concept for location of potential field sources”. Journal of Applied Geophysics, 32: 213-217.