انتخاب بهینه مته حفاری در سازندهای سروک و آسماری با استفاده از روش های تصمیم گیری چند معیاره

نوع مقاله : یادداشت فنی

نویسندگان

1 دانشیار، گروه مهندسی نفت، معدن و مواد و متالورژی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران

2 کارشناسی ارشد، گروه مهندسی نفت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

چکیده

تصمیم‌گیری صحیح در انتخاب مته‌های حفاری ممکن است به افزایش سرعت و راندمان حفاری منجر شود و در میزان هزینه‌ها کاهش قابل توجهی را به‌ دنبال داشته باشد. عوامل مختلفی در انتخاب بهینه مته نقش دارند که از مهم‌ترین آن‌ها می‌توان به معیارهایی مانند انرژی ویژه، قابلیت حفاری، هزینه به ازای هر فوت و آهنگ نفوذ اشاره کرد. یکی از بهترین روش‌ها برای دستیابی به این هدف، بهره‌گیری از روش‌های تصمیم‌گیری چند معیاره (MCDM) است که در این تحقیق از روش شباهت به گزینه ایده‌آل فازی (FTOPSIS) به دلیل دقت بالا و صحت نتایج حاصل برای انتخاب مته در سازندهای سروک و آسماری در یکی از میادین نفتی ایران (میدان نفتی مارون) استفاده شده است. در این راستا سه مدل مته 517، 527  و 537 که در سازندهای آسماری و سروک استفاده می‌شوند، بررسی و با استفاده از روش شباهت به گزینه ایده‌آل فازی (FTOPSIS) اولویت‌بندی و انتخاب شده‌اند. نتایج تحقیق نشان می‌دهد که در روش شباهت به گزینه ایده‌آل فازی، شاخص شباهت امتیازها برای مته‌های سازند آسماری با کدهای 517، 527 و 537 به ترتیب 479/0، 438/0 و 382/0 است، بنابراین مته 517 با بیشترین امتیاز به عنوان مته بهینه انتخاب می‌شود. همچنین در مورد سازند سروک نیز با روش فازی تاپسیس شاخص شباهت برای مته‌های کد 517، 527 و 537 به ترتیب 5405/0، ‌5019/0 و 5622/0 محاسبه شد، بنابراین مته 537 گزینه مناسب‌تری نسبت به دو گزینه دیگر در نظر گرفته می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimum Drilling Bit Selection in Sarvak and Asmari Formations Using Multiple Criteria Decision-Making Approaches

نویسندگان [English]

  • A. Ebrahimabadi 1
  • S. Moradi 2
1 Associate Professor, Dept. of Petroleum, Mining and Material Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 M.Sc, Dept. of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Appropriate drill bit selection can lead to enhance remarkable drilling operation efficiency and cost-saving. There are several factors affecting the bit selection process. Among these parameters, some factors such as specific energy (SE), cost per foot (CPF), formation drillability (FD), and rate of penetration (ROP) are considered the most important ones. One of the best approaches to select the optimum drill bit is to apply Multiple Criteria Decision-Making (MCDM) techniques. In this research work, Fuzzy Technique for Order-Preference by similarity to Ideal Solution (FTOPSIS) is used to choose the optimum bit for drilling operations in Sarvak and Asmari formations due to higher accuracy and validity of findings achieved from the FTOPSIS. With this respect, three types of bits (i.e. 517, 527, and 537) were considered as available candidates and were then ranked through the FTOPSIS, resulting in the best option (bit). In Asmari formation, similarity factors for bit types of 517, 527, and 537 bits were obtained as 0.479, 0.438, and 0.382, respectively indicating bit type 517 can be chosen as a proper option compared to other ones. Similarly, in Sarvak formation, results showed 0.5405, 0.5019, and 0.5622 values for 517, 527, and 537 bit types respectively, demonstrating the bit-type 537 is the most appropriate alternative in such formation.

کلیدواژه‌ها [English]

  • Bit selection
  • Multiple Criteria Decision-Making (MCDM)
  • Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS)
  • Asmari formation
  • Sarvak formation
[1] Hightower, W. J. (1964). “Proper Selection of Drill Bits and Their Use”. In SPE Mechanical Engineering Aspects of Drilling and Production Symposium, Society of Petroleum Engineers, Dallas, Texas, USA, pp. 12.
[2] Fear, M. J., Meany, N. C., and Evans, J. M. (1994). “An expert system for drill bit selection”. In SPE/IADC Drilling Conference, Society of Petroleum Engineers, Dallas, Texas, USA, pp. 10.
[3] Xu, H., Tochikawa, T., and Hatakeyama, T. (1997). “A Method for Bit Selection by Modelling ROP and Bit-Life”. In Annual Technical Meeting, Petroleum Society of Canada, Calgary, Alberta, Canada, pp. 11.
[4] Clegg, J. M., and Steven, P. B. (2006). “Improved Optimisation of Bit Selection Using Mathematically Modelled Bit Performance Indices”. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Society of Petroleum Engineers, Bangkok, Thailand, pp. 10.
[5] Rabia, H. (1985). “Oilwell drilling engineering: principles and practice”. Graham & Trotman, Limited, London, UK, pp. 322.
[6] Yιlmaz, S., Cem, D., and Serhat, A. (2002). “Application of artificial neural networks to optimum bit selection”. Computers & Geosciences, 28(2): 261-269.
[7] Rabia, H., Farrelly, M., and Barr, M. V. (1986). “A new approach to drill bit selection”. In European Petroleum Conference, Society of Petroleum Engineers, London, Uk, pp. 8.
[8] Winters, W. J., Warren, T. M., and Onyia, E. C. (1987). “Roller bit model with rock ductility and cone offset”. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Dallas, Texas, USA, pp. 12.
[9] Perrin, V. P., Graham, M.-W., and Alexander, W. L. (1997). “Drilling index-a new approach to bit performance evaluation”. In SPE/IADC drilling conference, Society of Petroleum Engineers, Amsterdam, Netherlands, pp. 7.
[10] Bilgesu, H. I., Tetrick, L. T., Altmis, U., Mohaghegh, Sh., and Ameri, S. (1997). “A new approach for the prediction of rate of penetration (ROP) values”. In SPE Eastern Regional Meeting, Society of Petroleum Engineers , Lexington, Kentucky, pp. 5.
[11] Mensa-Wilmot, G., Calhoun, B., and Perrin, V. P. (1999). “Formation drillability-definition, quantification and contributions to bit performance”. Middle East Drilling Technology, Abu Dhabi, UAE, Paper SPE/IADC 57558, pp. 8.
[12] Akin, S., and Celal, K. (2008). “Estimating drilling parameters for diamond bit drilling operations using artificial neural networks”. International Journal of Geomechanics, 8(1): 68-73.
[13] Behzadian, M., Baradaran Kazemzadeh, R., Albadvi, A., and Aghdasi, M. (2010). “PROMETHEE: A comprehensive literature review on methodologies and applications”. European journal of Operational Research, 200(1): 165-179.
[14] Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., and Ignatius, J. (2012). “A state-of the-art survey of TOPSIS applications”. Expert Systems with Applications, 39(17): 13051-13069.
[15] Zavadskas, E. K., Turskis, Z., and Kildienė, S. (2014). “State of art surveys of overviews on MCDM/MADM methods”. Technological and Economic Development of Economy, 20(1): .
[16] Amiri, M. P. (2010). “Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods”. Expert Systems with Applications,37(9): 6218-6224.
[17] Alemi, M., Jalalifar, H., Kamali, Gh. R., and Kalbasi, M. (2011). “A mathematical estimation for artificial lift systems selection based on ELECTRE model”. Journal of Petroleum Science and Engineering, 78(1): 193-200.
[18] Barak, S., Mehrgini, B., Maghsoudlou, H., and Branch, Q. (2014) “Multi-Criteria Decision Making Approach To Candidate Well Selection For Hydraulic Fracturing Treatment”. CIE44 & IMSS, 14: 2092-2106.
[19] Okonji, S. C. (2015). “Multi criteria risk analysis of a subsea BOP system”. Ph.D Thesis, Cranfield University, UK, Available at: https://dspace.lib.cranfield.ac.uk/handle/1826/11869.
[20] Khosravanian, R., and David, A. W. (2016). “Selection of high-rate gas well completion designs applying multi-criteria decision making and hierarchy methods”. Journal of Natural Gas Science and Engineering, 34: 1004-1016.
[21] Bilbao-Terol, A., Arenas-Parra, M., Cañal-Fernández, V., and Antomil-Ibias, J. (2014). “Using TOPSIS for assessing the sustainability of government bond funds”. Omega, 49: 1-17.
[22] Nădăban, S., Dzitac, S., and Dzitac, I. (2016). “Fuzzy topsis: A general view”. Procedia Computer Science, 91: 823-831.
[23] Hwang, Ch.-L., and Kwangsun, Y. (1981). “Multiple attributes decision making methods and applications”. Springer, Berlin, Germany, pp. 230.
[24] Chen, Ch.-T. (2000). “Extensions of the TOPSIS for group decision-making under fuzzy environment”. Fuzzy Sets and Systems, 114: 1-9.
[25] Iranian Oil Fields. (2018). http://www.parsoomashoil.com.
[26] Mardani, A., Jusoh, A., MD Nor, Kh., Khalifah, Z., Zakwan, N., and Valipour, A. (2015). “Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014”. Economic Research-Ekonomska Istraživanja, 28(1): 516-571. DOI: 10.1080/1331677X.2015.1075139.
[27] Sitorus, F., Cilliers, J. J., and Brito-Parada, P. R. (2018). “Multi-Criteria Decision Making for the Choice Problem in Mining and Mineral Processing: Applications and Trends”. Expert Systems with Applications, 2018: 1-56.
[28] N˘ad˘aban, S., Dzitac, S., and Dzitac, I. (2016). “Fuzzy TOPSIS: A General View”. Procedia Computer Science, 91: 823-831.