اثر زمان و اسیدیته در بهبود کارایی روش الکتروکینتیک برای پاکسازی خاک آلوده به کروم

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه محیط‌ زیست، دانشکده مهندسی معدن، دانشگاه تربیت مدرس، تهران

2 استادیار، گروه فراوری مواد معدنی، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران

3 استاد، دانشکده مهندسی معدن، دانشگاه تربیت مدرس، تهران

چکیده

آلودگی خاک به کروم، یکی از مهم‌ترین مشکلات زیست‌محیطی است و تهدیدی برای سلامت موجودات زنده و انسان‌ها به شمار می‌رود. یکی از روش‌های پاکسازی خاک، روش الکتروکینتیک است. در این تحقیق به بررسی اثر زمان و کنترل pH، در بازدهی روش الکتروکینتیک برای حذف کروم از خاک پرداخته شده است. برای تفسیر نتایج آزمایشات از دیاگرام پوربه استفاده شده است. با توجه به دیاگرام پوربه، در 6=Ph گونه‌های کاتیونی کروم سه ظرفیتی در آن pH، غالب است. در نتیجه این گونه‌ها به سمت کاتد منقل شده‌اند. در سمت آند هم محیط اکسیدی حاکم است و به همین علت گونه‌های آنیونی کروم در سمت آند منتقل شده‌اند، در نتیجه پدیده مهاجرت الکتریکی مکانیزم غالب برای انتقال کروم در این تحقیق است. در pH کمتر از 7، کروم به شکل گونه‌های کاتیونی و در pH بیشتر از 7 به شکل گونه‌های آنیونی و یا هیدروکسیدی رخ می‌دهد. نتایج بیانگر آن بود که کنترل pH مخازن، روش قابل قبولی در افزایش بازده استخراج کروم خواهد بود. نتایج به دست آمده از آزمایش‌های الکتروکینتیک بیانگر کارایی بیشتر این روش در زمان پنج روز در مقایسه با زمان سه روز است. تغییرات جریان الکتریکی حاکی از آن است که زمان سه روز برای پاکسازی کروم از خاک مناسب نیست. تشکیل گونه Cr(OH)3 در منطقه کاتد باعث کاهش جریان الکتریکی و جریان الکترواسمز شده است. بهترین راندمان حذف کلی کروم به 68 درصد در آزمایش 5 روزه بدون کنترل pH و 63 درصد آزمایش 5 روزه با کنترل pH است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Time and pH on Improving the Efficiency of the Electrokinetic Method for Remediation of the Soil Contaminated by Chromium

نویسندگان [English]

  • A. Nasiri 1
  • A. Jamshidi-Zanjani 2
  • A. Khodadadi Darban 3
1 M.Sc Student, Dept. of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
2 Assistant Professor, Dept. of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
3 Professor, Dept. of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In the recent years, a wide range of contaminated soil by chromium has been reported in the mining and industrial area. Soil contamination by chromium is one of the most important environmental problems that  adversely affects the health of living organisms and human beings. In this regard, electrokinetic is an effective method for soil remediation. This research, aims to investigate the effect of time and pH control on increasing the efficiency of the electrokinetic to remove chromium from contaminated soil. Pourbaix diagram used to interpret the results of experiments. According to the Pourbaix diagram, at pH = 6 trivalent chromium cationic species are dominant at this pH. As a result, these species have been migrated to the cathode. On the anode side, there is also an oxidation environment, which is caused the anionic chromium species transferred and migrated to the anode side. As a result, the phenomenon of electro-migration is the dominant mechanism for the transmission of chromium. At pH less than 7, chromium occurs in the form of cationic species and at pH greater than 7, occurs as anionic or hydroxide species. Results revealed that, reservoir pH control is an acceptable method for increasing chromium extraction efficiency. The results obtained from electrokinetic experiments indicate that this method is more efficient at five days compared to three days. The best removal efficiency of chromium from soil is 68% in 5 days experiment without pH control and 63% in 5 days test with pH control.

کلیدواژه‌ها [English]

  • Electrokinetic
  • Chromium
  • Soil remediation
  • pH control
  • Purbaix diagram
[1]     Weng, C. H., Lin, Y. T., Lin, T. Y., and Kao, C. M. (2007). “Enhancement of electrokinetic remediation of hyper-Cr (VI) contaminated clay by zero-valent iron”. Journal of Hazardous Materials, 149(2): 292-302.
[2]     Xu, Y., Xu, X., Hou, H., Zhang, J., Zhang, D., and Qian, G. (2016). “Moisture content-affected electrokinetic remediation of Cr (VI)-contaminated clay by a hydrocalumite barrier”. Environmental Science and Pollution Research, 23(7): 6517-6523.
[3]     Suzuki, T., Kawai, K., Moribe, M., and Niinae, M. (2014). “Recovery of Cr as Cr (III) from Cr (VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier”. Journal of Hazardous Materials, 278: 297-303.
[4]     Fu, R., Wen, D., Xia, X., Zhang, W., and Gu, Y. (2017). “Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes”. Chemical Engineering Journal, 316: 601-608.
[5]     Reddy, K. R., Parupudi, U. S., Devulapalli, S. N., and Xu, C.Y. (1997). “Effects of soil composition on the removal of chromium by electrokinetics”. Journal of Hazardous Materials, 55(1-3): 135-158.
[6]     Reddy, K. R., and Chinthamreddy, S. (1999). “Electrokinetic remediation of heavy metal-contaminated soils under reducing environments”. Waste Management, 19(4): 269-282.
[7]     Mulligan, C. N., Yong, R. N., and Gibbs, B. F.(2001). “Remediation technologies for metal-contaminated soils and groundwater: an evaluation”. Engineering geology, 60(1-4): 193-207.
[8]     Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M., and Parker, R. (1995). “Electrokinetic remediation: basics and technology status”. Journal of Hazardous Materials, 40(2): 117-137.
[9]     Zanjani, A. J., Saeedi, M., and Weng, C. H. ( 2012).  “An Electrokinetic Process Coupled Activated Carbon Barrier for Nickel Removal from Kaolinite”. Environment Asia, 5(2): 28-35.
[10]  Jamshidi-Zanjani, A., and Khodadadi Darban, A. (2017). “A review on enhancement techniques of electrokinetic soil remediation”. Pollution, 3(1): 157-166.
[11]  Moghadam, M. J., Moayedi, H., Sadeghi, M. M., and Hajiannia, A. (2016). “A review of combinations of electrokinetic applications”. Environmental Geochemistry and Health, 38(6): 1217-1227.
[12]  Cameselle, C. (2015). “Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil”. Electrochimica Acta, 181: 31-38.
[13]   Sawada, A., Mori, K. I., Tanaka, S., Fukushima, M., and Tatsumi, K. (2004). “Removal of Cr (VI) from contaminated soil by electrokinetic remediation”. Waste Management, 24(5): 483-490.
[14]  Cang, L., Zhou, D. M., Alshawabkeh, A. N., and Chen, H. F. (2007). “Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community”. Journal of Hazardous Materials, 142(1-2): 111-117.
[15]  Fansheng, M., Lingli, L., Juling, W., and Yeyao, W. (2013). “January. Effect of pH control at the cathode for the electrokinetic remediation efficiency”. In 2013 Third International Conference on Intelligent System Design and Engineering Applications, IEEE, 646-650.
[16]  Jiang, H., Liu, G., He, S., and Guo, J. (2018). “Effects of Complexes and pH Buffer Solution in Electrokinetic Oxidation Treatment on Sediments Chromium Removal”. Wuhan University Journal of Natural Sciences, 23(3): 265-269.
[17]  Reddy, K. R., and Chinthamreddy, S. (2003). “Effects of initial form of chromium on electrokinetic remediation in clays”. Advances in Environmental Research, 7(2): 353-365.
[18]  Zhang, P., Jin, C., Zhao, Z., and Tian, G. (2010). “2D crossed electric field for electrokinetic remediation of chromium contaminated soil”. Journal of Hazardous Materials, 177(1-3): 1126-1133.
[19]  Meng, F., Xue, H., Wang, Y., Zheng, B., and Wang, J. (2018). “Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil”. Environmental Technology, 39(3):356-362.
[20]  U.S EPA. (1992). “Test Methods for Evaluating Solid Waste Physical/Chemical Methods”. EPA-SW-846, Washington D.C.
[21]  Zhang, Y., Chu, G., Dong, P., Xiao, J., Meng, Q., Baumgartel, M., Xu, B., and Hao, T. (2018). “Enhanced electrokinetic remediation of lead-and cadmium-contaminated paddy soil by composite electrolyte of sodium chloride and citric acid”. Journal of Soils and Sediments, 18(5): 1915-1924
[22]  Prakash, P., Chakraborty, P. K., Priya, T. and Mishra, B. K. (2018). “Performance evaluation of saponin over other organic acid and tap water for removal of chromium in tannery sludge by electrokinetic enhancement”. Separation Science and Technology, 1-10.
[23]  Zhou, M., Xu, J., Zhu, S., Wang, Y., and Gao, H. ( 2018). “Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy”. Separation and Purification Technology, 190: 297-306.
[24]  Ding, L., Lv, W., Yao, K., Li, L., Wang, M., and Liu, G. (2017). “Remediation of Cd (II)-contaminated soil via humin-enhanced electrokinetic technology”. Environmental Science and Pollution Research, 24(4): 3430-3436
[25]  Saichek, R. E., and Reddy, K. R. (2003). “Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil”. Chemosphere, 51(4): 273-287.
[26]  Shin, S.Y., Park, S. M., and Baek, K. (2017). “Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil”. Environmental Science and Pollution Research, 24(10): 9820-9825.
[27]  Shariatmadari, N., Weng, C. H., and Daryaee, H.( 2009). “Enhancement of hexavalent chromium [Cr (VI)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier”. Environmental Engineering Science, 26(6): 1071-1079.
[28]  Reddy, K. R., and Chinthamreddy, S. (2003). “Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils”. Journal of Geotechnical and Geoenvironmental Engineering, 129(3): 263-277.
[29]  Hicks, R. E., and Tondorf, S. (1994). “Electrorestoration of metal contaminated soils”. Environmental Science & Technology, 28(12): 2203-2210.