[1] Weng, C. H., Lin, Y. T., Lin, T. Y., and Kao, C. M. (2007). “Enhancement of electrokinetic remediation of hyper-Cr (VI) contaminated clay by zero-valent iron”. Journal of Hazardous Materials, 149(2): 292-302.
[2] Xu, Y., Xu, X., Hou, H., Zhang, J., Zhang, D., and Qian, G. (2016). “Moisture content-affected electrokinetic remediation of Cr (VI)-contaminated clay by a hydrocalumite barrier”. Environmental Science and Pollution Research, 23(7): 6517-6523.
[3] Suzuki, T., Kawai, K., Moribe, M., and Niinae, M. (2014). “Recovery of Cr as Cr (III) from Cr (VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier”. Journal of Hazardous Materials, 278: 297-303.
[4] Fu, R., Wen, D., Xia, X., Zhang, W., and Gu, Y. (2017). “Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes”. Chemical Engineering Journal, 316: 601-608.
[5] Reddy, K. R., Parupudi, U. S., Devulapalli, S. N., and Xu, C.Y. (1997). “Effects of soil composition on the removal of chromium by electrokinetics”. Journal of Hazardous Materials, 55(1-3): 135-158.
[6] Reddy, K. R., and Chinthamreddy, S. (1999). “Electrokinetic remediation of heavy metal-contaminated soils under reducing environments”. Waste Management, 19(4): 269-282.
[7] Mulligan, C. N., Yong, R. N., and Gibbs, B. F.(2001). “Remediation technologies for metal-contaminated soils and groundwater: an evaluation”. Engineering geology, 60(1-4): 193-207.
[8] Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M., and Parker, R. (1995). “Electrokinetic remediation: basics and technology status”. Journal of Hazardous Materials, 40(2): 117-137.
[9] Zanjani, A. J., Saeedi, M., and Weng, C. H. ( 2012). “An Electrokinetic Process Coupled Activated Carbon Barrier for Nickel Removal from Kaolinite”. Environment Asia, 5(2): 28-35.
[10] Jamshidi-Zanjani, A., and Khodadadi Darban, A. (2017). “A review on enhancement techniques of electrokinetic soil remediation”. Pollution, 3(1): 157-166.
[11] Moghadam, M. J., Moayedi, H., Sadeghi, M. M., and Hajiannia, A. (2016). “A review of combinations of electrokinetic applications”. Environmental Geochemistry and Health, 38(6): 1217-1227.
[12] Cameselle, C. (2015). “Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil”. Electrochimica Acta, 181: 31-38.
[13] Sawada, A., Mori, K. I., Tanaka, S., Fukushima, M., and Tatsumi, K. (2004). “Removal of Cr (VI) from contaminated soil by electrokinetic remediation”. Waste Management, 24(5): 483-490.
[14] Cang, L., Zhou, D. M., Alshawabkeh, A. N., and Chen, H. F. (2007). “Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community”. Journal of Hazardous Materials, 142(1-2): 111-117.
[15] Fansheng, M., Lingli, L., Juling, W., and Yeyao, W. (2013). “January. Effect of pH control at the cathode for the electrokinetic remediation efficiency”. In 2013 Third International Conference on Intelligent System Design and Engineering Applications, IEEE, 646-650.
[16] Jiang, H., Liu, G., He, S., and Guo, J. (2018). “Effects of Complexes and pH Buffer Solution in Electrokinetic Oxidation Treatment on Sediments Chromium Removal”. Wuhan University Journal of Natural Sciences, 23(3): 265-269.
[17] Reddy, K. R., and Chinthamreddy, S. (2003). “Effects of initial form of chromium on electrokinetic remediation in clays”. Advances in Environmental Research, 7(2): 353-365.
[18] Zhang, P., Jin, C., Zhao, Z., and Tian, G. (2010). “2D crossed electric field for electrokinetic remediation of chromium contaminated soil”. Journal of Hazardous Materials, 177(1-3): 1126-1133.
[19] Meng, F., Xue, H., Wang, Y., Zheng, B., and Wang, J. (2018). “Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil”. Environmental Technology, 39(3):356-362.
[20] U.S EPA. (1992). “Test Methods for Evaluating Solid Waste Physical/Chemical Methods”. EPA-SW-846, Washington D.C.
[21] Zhang, Y., Chu, G., Dong, P., Xiao, J., Meng, Q., Baumgartel, M., Xu, B., and Hao, T. (2018). “Enhanced electrokinetic remediation of lead-and cadmium-contaminated paddy soil by composite electrolyte of sodium chloride and citric acid”. Journal of Soils and Sediments, 18(5): 1915-1924
[22] Prakash, P., Chakraborty, P. K., Priya, T. and Mishra, B. K. (2018). “Performance evaluation of saponin over other organic acid and tap water for removal of chromium in tannery sludge by electrokinetic enhancement”. Separation Science and Technology, 1-10.
[23] Zhou, M., Xu, J., Zhu, S., Wang, Y., and Gao, H. ( 2018). “Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy”. Separation and Purification Technology, 190: 297-306.
[24] Ding, L., Lv, W., Yao, K., Li, L., Wang, M., and Liu, G. (2017). “Remediation of Cd (II)-contaminated soil via humin-enhanced electrokinetic technology”. Environmental Science and Pollution Research, 24(4): 3430-3436
[25] Saichek, R. E., and Reddy, K. R. (2003). “Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil”. Chemosphere, 51(4): 273-287.
[26] Shin, S.Y., Park, S. M., and Baek, K. (2017). “Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil”. Environmental Science and Pollution Research, 24(10): 9820-9825.
[27] Shariatmadari, N., Weng, C. H., and Daryaee, H.( 2009). “Enhancement of hexavalent chromium [Cr (VI)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier”. Environmental Engineering Science, 26(6): 1071-1079.
[28] Reddy, K. R., and Chinthamreddy, S. (2003). “Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils”. Journal of Geotechnical and Geoenvironmental Engineering, 129(3): 263-277.
[29] Hicks, R. E., and Tondorf, S. (1994). “Electrorestoration of metal contaminated soils”. Environmental Science & Technology, 28(12): 2203-2210.