پیش بینی ترمودینامیکی تشکیل رسوبات سولفات باریم و استرانسیم در طرح های سیلابزنی آب درمخازن نفتی

نویسندگان

1 کارشناسی ارشد مهندسی شیمی، باشگاه پژوهشگران جوان و نخبگان، واحد شیراز، دانشگاه آزاد اسلامی، شیراز

2 کارشناسی ارشد، پژوهشگاه صنعت نفت تهران

3 دانشیار، پژوهشگاه صنعت نفت تهران

چکیده

امروزه عملیات بازیابی نفت در مخازن نفتی از طریق تزریق آب رویکرد اقتصادی مطلوبی دارد اما بازده این روش در اثر تشکیل رسوبات معدنی در حالت فوق اشباع کاهش می‌یابد. از این‌رو توجه و مطالعات بیشتر برای جلوگیری از مشکل تشکیل رسوب معدنی ضروری به نظر می‌رسد. در مطالعه حاضر، تشکیل رسوبات معدنی سولفات باریم و سولفات استرانسیم در طی عملیات تزریق آب در چند میدان نفتی مانند نصرت، سیری و فورتیس با استفاده از مدل ضریب فعالیت Extended UNIQUAC  مطالعه و پیش‌بینی شده است. با استناد به نتایج این مطالعه، مدل Extended UNIQUAC  با نتایج تجربی و میدانی به خوبی مطابقت دارد. هم‌چنین رسوب سولفات باریم و سولفات استرانسیم در میدان نفتی نصرت به ترکیب آب سازند و آب تزریقی (آب خلیج فارس) و شرایط عملیاتی بستگی دارد که می‌تواند باعث ایجاد مشکلاتی در تجهیزات سطحی و زیر سطحی در عملیات بهره‌برداری نفت شود. هرچند برای میدان نفتی سیری بر اساس آنالیز آب و اطلاعات شرایط عملیاتی، تشکیل رسوب سولفات باریم و سولفات استرانسیم قابل توجه نیست. در این مطالعه درجه حرارت برابر 50، 100 و 110 درجه سانتی‌گراد و هم‌چنین فشار برابر 135،  270  و 2465psi   است. مقدار غلظت املاح معدنی در نمونه آب سازند و آب تزریقی حداکثر 86900 میلی‌گرم بر لیتر بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermodynamic Prediction of Ba and Sr Sulphates Scale Formation in Water Flooding Projects in Oil Reservoirs

نویسندگان [English]

  • S.H. Hashemi 1
  • M. Dinmohammad 2
  • S.A. Mousavi Dehghani 3
1 M.Sc, Chemical Engineering Group, Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 M.Sc, Institute of Production and Recovery, RIPI, NIOC, P.O.Box: 14757-3311, West Blvd. of Azadi Sports Complex Tehran, Iran
3 Associate Professor, Institute of Production and Recovery, RIPI, NIOC, P.O.Box: 14757-3311, West Blvd. of Azadi Sports Complex Tehran, Iran
چکیده [English]

Nowadays, recovery operations in oil reservoirs through water injection have a favourable economic approach, but the efficiency of this method decreases due to the formation of mineral deposits in super saturation. In the present study, formation of mineral deposits of barium sulphate and strontium sulphate has been studied and predicted during water imbibition operation in several oil fields such as Nosrat and Siri, according to the Extended UNICQUAC activity factor model. Based on the results of this study, the Extended UNIQUAC model is well matched to experimental and field results. Also, the prediction of barium sulphate and strontium sulphate precipitation in Nosrat oilfield depends on the conditions and composition of formation water, injected water (Persian Gulf water) and operational conditions, which can cause problems in surface and sub-surface equipment in oil exploitation operations. But for the Siri oil field, based on the analysis of water and operational data, the precipitation of barium sulphate and strontium sulphate is not significant. In this study, the temperature is 50, 100 and 110 °C, and also the pressure is 135, 270 and 2465 psi. The concentration of mineral salts in the water sample and injection water was up to 86,900 mg / l.

کلیدواژه‌ها [English]

  • Mineral ion
  • Extended UNIQUAC Model
  • Water flooding Operations
  • Mineral Deposit Formation
[1]     El-Said, M., Ramzi, M., and Abdel-Moghny, T. (2009). “Analysis of Oilfield Waters by Ion Chromatography to Determine the Composition of Scale Deposition”. Desalination, 249: 748–756.
[2]     Puntervold, T., and Austad, T. (2008). “Injection of Seawater and Mixtures with Produced Water into North Sea Chalk Formation: Impact of Fluid–rock Interactions on Wettability and Scale Formation”. Journal of Petroleum Science and Engineering, 63: 23–33.
[3]     Mitchell, W., Grist, M., and Boyle, J. (1980). “Chemical Treatments Associated With North Sea Projects”. Journal of Petroleum Technology SPE 7880, 904 –912.
[4]     Lindlo, C., and Stoffer, G. (1983). “case study of sea water injection incompatibility”. Journal of Petroleum Technology, 35(7):1256 –1262.
[5]     Jordan, M., Graff, J., Cooper, N. (2000). “Development and Deployment of a Scale Squeeze Enhancer and Oil-Soluble Scale Inhibitor To Avoid Deferred Oil Production Losses”. International Symposium on Formation Damage Control, Lafayette, Louisiana: SPE 58725.
[6]     Moghadasi, J., Jamialahmadi, M., Muller-Steinhagen, H., and Sharif, A. (2003b). “Scale Formation in Oil Reservoir and Production Equipment”. The SPE European Formation Damage Conference, SPE 82233: 1–12.
[7]     Voloshin, I., Ragulin, A., Tyabayeva, E., Diakonov, I., and Mackay, J. (2003). “Scaling Problems in Western Siberia”. The SPE fifth International Symposium on Oilfield scale, Aberdeen, UK: SPE 80407.
[8]     Nasr-El-Din, H., Al-Saiari, H., and Al-Hajji, H. (2004). “A Single-Stage Acid Treatment to Remove and Mitigate Calcium Carbonate Scale”. The SPE International. Aberdeen, United Kingdom: SPE 87454.
[9]     Raju, K. (2009). “Successful Scale Mitigation Strategies. the SPE International Symposium on Oilfield”. The Woodlands, Texas: SPE 121679 .
[10]  Naseri. S., Moghadasi. J., and Jamialahmadi, M.(2015). “An Experimental Study on Permeability Reduction Resulting from Mixed BaSO4, CaSO4, and SrSO4 Scale Deposition in Porous Media during Water Injection”. Iranian Journal of Oil & Gas Science and Technology, 4(4): 33-49.
[11]  Al-Roomi, Y. M.,  and Hussain, K. F. (2016). “Potential kinetic model for scaling and scale inhibition mechanism, IN Desalination”. 393: 186-195.
[12]  Jing, G., Tang, S., Li, X., and Wang, H. (2017). “The  analysis of scaling mechanism for water- injection pipe columns in the Daqing Oilfield”. Arabian Journal of Chemistry, 10(1): 1235-1239.
[13]  Azizi, J., Shadizadeh, S. R., Khaksar Manshad, A., and Jadidi, N. (2018). “Effects of pH and Temperature on Oilfield Scale Formation. Iranian”. Journal of Oil & Gas Science and Technology, 7(3): 18-31.
[14]  Garcia, A., Thomsen, K., and Stenby, E. (2005). “Prediction of Mineral Scale Formation in Geothermal and Oilfield Operations Using the Extended UNIQUAC Model Part I. Sulfate Scaling Minerals”. Geothermics, 34: 61-97.
[15]  Chen, C. C., and Song, Y. (2004). “Generalized Electrolyte-NRTL Model for Mixed-Solvent Electrolyte Systems”. THERMODYNAMICS, 50(80): 1928-1921.
[16]  Prausnitz, J. M., Lichtenthaler, R. N., and de Azevedo, E. G. (1999). “Molecular Thermodynamicsof Fluid Phase Equilibria”. Third ed., Prentice Hall PTR, Upper Saddle River, NJ.
[17]  Chen, C. C., and Evans, L. B. (1986). “A local composition model for the excess Gibbs energy of aqueous electrolyte systems”. AIChE Journal, 32: 444-454.
[18]  Wang, P., Springer, R. D., Anderko, A., and Young, R. D. (2004). “Modeling Phase Equilibria and Speciation in Mixed-Solvent Electrolyte Systems”. Fluid Phase Equilib, 222–223: 11–17.
[19]  Wang, P., Anderko, A., and Young, R. D. (2002). “A Speciation-Based Model for Mixed-Solvent Electrolyte Systems”. Fluid Phase Equilibria, 203: 141-176.
[20]  Liu, H., and Papangelakis, V. G. (2006). “Solubility of Pb(II) and Ni(II) in Mixed Sulfate−Chloride Solutions with the Mixed Solvent Electrolyte Model”. Industrial & Engineering Chemistry Research, 45: 39-47.
[21]  Haghtalab, A., Kamali, M. J., and Shahrabadi, A. (2014). “Prediction mineral scale formation in oil reservoirs during water injection”. Fluid Phase Equilibria, 373: 43–54.
[22]  Wang, W., Zeng, D., Zhou, H., Wu, X., and Yin, X. (2015). “Solubility Isotherms of Gypsum, Hemihydrate, and Anhydrite in the Ternary Systems CaSO4 + MSO4 + H2O (M = Mn, Co, Ni, Cu, Zn) at T = 298.1 K to 373.1 K”. Journal of Chemical & Engineering Data, 60: 3024-3032.
[23]  Zhang, N., Brugger, j., Etschmann, B., Ngothai, Y., and Zeng, D. (2015). “Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: An X-Ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O”. System.Journal.Pone, 10(4): 1-23.
[24]  Han, H., Li, D., Guo, L., Yao, Y., Yang, H., and Zeng, D. (2015). “Isopiestic measurements of water activity for the NaCl−KCl−MgCl2−H2O systems at 323.15 K”. Journal of Chemical & Engineering Data, 60: 1139-1145.
[25]  Oddo, J., and Tomson, M. (1994). “Why Scale Forms and How to Predict It”. SPE Production and Operations, 9: 47-54.
[26]  Wagman, D., Evans, W., Parker, V., Schumm, R., Halow, I., and Bailey, S. (1982). “The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units”. Journal of Physical and Chemical Reference Data, 2(11): 1807-1812.
[27]  Thomsen, K., and Rasmussen. P. (1999). “Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolytesystems”. Chemical Engineering Science, 54: 1787-1802.
[28]  Garcia, A., Thomsen, K., and Stenby, E. (2005). “Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model Part I. Sulfate scaling minerals”. Geothermics, 34: 61–97.
[29]  Yuan, M., and Todd, A. (1991). “Prediction of Sulfate Scaling Tendency in Oilfield Operations”. SPE Production Engineering, SPE-18484-MS, 63-72.
[30]  Moghadasi, J., Jamialahmadi, M., MullerSteinhagen, H., Sharif, A., and Izadpanah,M. R.(2002). “Formation damage in Iranian oil fields”. Scientific Research, SPE No. 73781.
[31]  Jacques, F., and Bourland, I. (1983). “A study solubility of strontium sulfate”. Society of Petroleum Engineers Journal, 23(2): 292-300.
[32]  پورپروانه، ع.، زارع علی آبادی، ح.،  شجاع یامی، ا.؛ 1395؛"مدلسازی ترمودینامیکی تشکیل رسوبهای معدنی در فرآیند تزریق آب به مخازن نفتی سیری و نصرت". پژوهش نفت، دوره 26، شماره 95-1، ص 15-21.
[33]  صبور، س.، لطف اللهی، م.ن.، متحدین، پ.؛ 1391؛"تعیین مقدار رسوب در فرآیند تزریق آب به مخازن نفتی ایران". نشریه شیمی و مهندسی شیمی،  دوره 31، شماره 1 ، ص115-123.