[1] El-Said, M., Ramzi, M., and Abdel-Moghny, T. (2009). “Analysis of Oilfield Waters by Ion Chromatography to Determine the Composition of Scale Deposition”. Desalination, 249: 748–756.
[2] Puntervold, T., and Austad, T. (2008). “Injection of Seawater and Mixtures with Produced Water into North Sea Chalk Formation: Impact of Fluid–rock Interactions on Wettability and Scale Formation”. Journal of Petroleum Science and Engineering, 63: 23–33.
[3] Mitchell, W., Grist, M., and Boyle, J. (1980). “Chemical Treatments Associated With North Sea Projects”. Journal of Petroleum Technology SPE 7880, 904 –912.
[4] Lindlo, C., and Stoffer, G. (1983). “case study of sea water injection incompatibility”. Journal of Petroleum Technology, 35(7):1256 –1262.
[5] Jordan, M., Graff, J., Cooper, N. (2000). “Development and Deployment of a Scale Squeeze Enhancer and Oil-Soluble Scale Inhibitor To Avoid Deferred Oil Production Losses”. International Symposium on Formation Damage Control, Lafayette, Louisiana: SPE 58725.
[6] Moghadasi, J., Jamialahmadi, M., Muller-Steinhagen, H., and Sharif, A. (2003b). “Scale Formation in Oil Reservoir and Production Equipment”. The SPE European Formation Damage Conference, SPE 82233: 1–12.
[7] Voloshin, I., Ragulin, A., Tyabayeva, E., Diakonov, I., and Mackay, J. (2003). “Scaling Problems in Western Siberia”. The SPE fifth International Symposium on Oilfield scale, Aberdeen, UK: SPE 80407.
[8] Nasr-El-Din, H., Al-Saiari, H., and Al-Hajji, H. (2004). “A Single-Stage Acid Treatment to Remove and Mitigate Calcium Carbonate Scale”. The SPE International. Aberdeen, United Kingdom: SPE 87454.
[9] Raju, K. (2009). “Successful Scale Mitigation Strategies. the SPE International Symposium on Oilfield”. The Woodlands, Texas: SPE 121679 .
[10] Naseri. S., Moghadasi. J., and Jamialahmadi, M.(2015). “An Experimental Study on Permeability Reduction Resulting from Mixed BaSO4, CaSO4, and SrSO4 Scale Deposition in Porous Media during Water Injection”. Iranian Journal of Oil & Gas Science and Technology, 4(4): 33-49.
[11] Al-Roomi, Y. M., and Hussain, K. F. (2016). “Potential kinetic model for scaling and scale inhibition mechanism, IN Desalination”. 393: 186-195.
[12] Jing, G., Tang, S., Li, X., and Wang, H. (2017). “The analysis of scaling mechanism for water- injection pipe columns in the Daqing Oilfield”. Arabian Journal of Chemistry, 10(1): 1235-1239.
[13] Azizi, J., Shadizadeh, S. R., Khaksar Manshad, A., and Jadidi, N. (2018). “Effects of pH and Temperature on Oilfield Scale Formation. Iranian”. Journal of Oil & Gas Science and Technology, 7(3): 18-31.
[14] Garcia, A., Thomsen, K., and Stenby, E. (2005). “Prediction of Mineral Scale Formation in Geothermal and Oilfield Operations Using the Extended UNIQUAC Model Part I. Sulfate Scaling Minerals”. Geothermics, 34: 61-97.
[15] Chen, C. C., and Song, Y. (2004). “Generalized Electrolyte-NRTL Model for Mixed-Solvent Electrolyte Systems”. THERMODYNAMICS, 50(80): 1928-1921.
[16] Prausnitz, J. M., Lichtenthaler, R. N., and de Azevedo, E. G. (1999). “Molecular Thermodynamicsof Fluid Phase Equilibria”. Third ed., Prentice Hall PTR, Upper Saddle River, NJ.
[17] Chen, C. C., and Evans, L. B. (1986). “A local composition model for the excess Gibbs energy of aqueous electrolyte systems”. AIChE Journal, 32: 444-454.
[18] Wang, P., Springer, R. D., Anderko, A., and Young, R. D. (2004). “Modeling Phase Equilibria and Speciation in Mixed-Solvent Electrolyte Systems”. Fluid Phase Equilib, 222–223: 11–17.
[19] Wang, P., Anderko, A., and Young, R. D. (2002). “A Speciation-Based Model for Mixed-Solvent Electrolyte Systems”. Fluid Phase Equilibria, 203: 141-176.
[20] Liu, H., and Papangelakis, V. G. (2006). “Solubility of Pb(II) and Ni(II) in Mixed Sulfate−Chloride Solutions with the Mixed Solvent Electrolyte Model”. Industrial & Engineering Chemistry Research, 45: 39-47.
[21] Haghtalab, A., Kamali, M. J., and Shahrabadi, A. (2014). “Prediction mineral scale formation in oil reservoirs during water injection”. Fluid Phase Equilibria, 373: 43–54.
[22] Wang, W., Zeng, D., Zhou, H., Wu, X., and Yin, X. (2015). “Solubility Isotherms of Gypsum, Hemihydrate, and Anhydrite in the Ternary Systems CaSO4 + MSO4 + H2O (M = Mn, Co, Ni, Cu, Zn) at T = 298.1 K to 373.1 K”. Journal of Chemical & Engineering Data, 60: 3024-3032.
[23] Zhang, N., Brugger, j., Etschmann, B., Ngothai, Y., and Zeng, D. (2015). “Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: An X-Ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O”. System.Journal.Pone, 10(4): 1-23.
[24] Han, H., Li, D., Guo, L., Yao, Y., Yang, H., and Zeng, D. (2015). “Isopiestic measurements of water activity for the NaCl−KCl−MgCl2−H2O systems at 323.15 K”. Journal of Chemical & Engineering Data, 60: 1139-1145.
[25] Oddo, J., and Tomson, M. (1994). “Why Scale Forms and How to Predict It”. SPE Production and Operations, 9: 47-54.
[26] Wagman, D., Evans, W., Parker, V., Schumm, R., Halow, I., and Bailey, S. (1982). “The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units”. Journal of Physical and Chemical Reference Data, 2(11): 1807-1812.
[27] Thomsen, K., and Rasmussen. P. (1999). “Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolytesystems”. Chemical Engineering Science, 54: 1787-1802.
[28] Garcia, A., Thomsen, K., and Stenby, E. (2005). “Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model Part I. Sulfate scaling minerals”. Geothermics, 34: 61–97.
[29] Yuan, M., and Todd, A. (1991). “Prediction of Sulfate Scaling Tendency in Oilfield Operations”. SPE Production Engineering, SPE-18484-MS, 63-72.
[30] Moghadasi, J., Jamialahmadi, M., MullerSteinhagen, H., Sharif, A., and Izadpanah,M. R.(2002). “Formation damage in Iranian oil fields”. Scientific Research, SPE No. 73781.
[31] Jacques, F., and Bourland, I. (1983). “A study solubility of strontium sulfate”. Society of Petroleum Engineers Journal, 23(2): 292-300.
[32] پورپروانه، ع.، زارع علی آبادی، ح.، شجاع یامی، ا.؛ 1395؛"مدلسازی ترمودینامیکی تشکیل رسوبهای معدنی در فرآیند تزریق آب به مخازن نفتی سیری و نصرت". پژوهش نفت، دوره 26، شماره 95-1، ص 15-21.
[33] صبور، س.، لطف اللهی، م.ن.، متحدین، پ.؛ 1391؛"تعیین مقدار رسوب در فرآیند تزریق آب به مخازن نفتی ایران". نشریه شیمی و مهندسی شیمی، دوره 31، شماره 1 ، ص115-123.