[1] Ghanbarabadi, H., and Khoshandam, B. (2015). “Simulation and comparison of Sulfinol solvent performance with Amine solvents in removing sulfur compounds and acid gases from natural sour gas”. Journal of Natural Gas Science and Engineering, 22: 415-420.
[2] Rezakazemi, M., Niazi, Z., Mirfendereski, M., Shirazian, S., Mohammadi, T., and Pak, A. (2011). “CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor”. Chemical Engineering Journal, 168(3): 1217-1226.
[3] Lunsford, K. M., and Bullin, J. A. (1996). “Optimization of amine sweetening units”. American Institute of Chemical Engineers, 12-150.
[4] Saghatoleslami, N., Salooki, M., and Mohamadi, N. (2011). “Auto-design of neural network–based GAs for manipulating the khangiran gas refinery sweetening absorption column outputs”. Petroleum Science and Technology, 29(14): 1437-1448.
[5] Salooki, M. K., Abedini, R., Adib, H., and Koolivand, H. (2011). “Design of neural network for manipulating gas refinery sweetening regenerator column outputs”. Separation and Purification Technology, 82: 1-9.
[6] Wang, T., Hovland, J., and Jens, K. J. (2015). “Amine reclaiming technologies in post-combustion carbon dioxide capture”. Journal of Environmental Sciences, 27: 276-289.
[7] Addington, L. and Ness, C. (2009). “An evaluation of general “rules of thumb” in amine sweetening unit design and operation”. Bryan Research and Engineering, 140-250.
[8] Bullin, J. A., Polasek, J. C., and Holmes, J. W. (1981). “Optimization of new and existing amine gas sweetening plants using computer simulation. in Proceedings of the sixtieth GPA annual convention”. Gas Processors Association Tulsa, OK.
[9] Kazemi, A., Malayeri, M., and Shariati, A. (2014). “Feasibility study, simulation and economical evaluation of natural gas sweetening processes–Part 1: a case study on a low capacity plant in Iran”. Journal of Natural Gas Science and Engineering, 20: 16-22.
[10] Sharif Dashti, S., Shariati, A., and Khosravi Nikou, M. R. (2015). “Sensitivity analysis for selection of an optimum amine gas sweetening process with minimum cost requirement”. Asia-Pacific Journal of Chemical Engineering, 10(5): 709-715.
[11] Qiu, K., Shang, J. F., Ozturk, M., Li, T. F., Chen, S. K., Zhang, L. Y., and Gu, X. H. (2014). “Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening”. Journal of Natural Gas Science and Engineering, 21: 379-385.
[12] Khakdaman, H. R., Zoughi, A., Abedinzadegan, M., and Ghadirian, H. A. (2008). “Revamping of gas refineries using amine blends”. IUST International Journal of Engineering Science, 19(3): 27-32.
[13] Øi, L. E., Bråthen, T., Berg, C., Brekne, S.K., Flatin, M., Johnsen, R., Moen, I. G., and Thomassen, E. (2014). “Optimization of configurations for amine based CO2 absorption using Aspen HYSYS”. Energy Procedia, 51: 224-233.
[14] Al-Lagtah, N. M., Al-Habsi, S., and Onaizi, S. A. (2015). “Optimization and performance improvement of Lekhwair natural gas sweetening plant using Aspen HYSYS”. Journal of Natural Gas Science and Engineering, 26: 367-381.
[15] Berrouk, A. S., and Ochieng, R. (2014). “Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation”. Fuel Processing Technology, 127: 20-25.
[16] Moran, S. (2015). “An applied Guide to process and plant design”. Butterworth-Heinemann, 25-51.
[17] Erwin, D. L. (2002). “Industrial chemical process design”. McGraw-Hill, 115-146.
[18] Muhammad, A., and GadelHak, Y. (2014). “Correlating the additional amine sweetening cost to acid gases load in natural gas using Aspen Hysys”. Journal of Natural Gas Science and Engineering, 17: 119-130.