استفاده از باطله های کارخانه زغالشوئی زرند در تولید پوکه صنعتی

نویسندگان

1 استادیار، پژوهشکده مهندسی مواد و متالورژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

2 دکترای مهندسی شیمی، کارخانه پلی اتیلن کرمان

چکیده

برای تولید پوکه های صنعتی از خاک‌های رس مختلفی به عنوان ماده اولیه استفاده می‌شود. می‌توان برخی از پسماند‌ها و باطله‌ها را به عنوان ماده افزودنی به مواد اولیه پوکه صنعتی اضافه کرد. دراین مطالعه برای تولید پوکه صنعتی، باطله کارخانه زغالشوئی زرند به عنوان ماده افزودنی با در‌صد‌های 1، 2، 3، 4، 5، 6، 7، 8، 10، 15 و 20 در دمای °C1140 ومدت 5 دقیقه به مواد اولیه کارخانه تولید پوکه عمران پارس سیرجان اضافه شد و برای بررسی خواص نمونه‌های پوکه تولیدشده مقادیر دانسیته، مقاومت فشاری و درصد جذب آب آن‌ها اندازه‌گیری شد. برای مطالعه بیشتر، تصاویر سطوح بعضی از نمونه‌های تولیدی توسط میکروسکوپ الکترونی(FE - SEM) تهیه شد. نتایج حاصله نشان دادند که مقدار مناسب اضافه کردن باطله زغال 3% می باشد و در این مقدار با دماهای مختلف (بین °C1110 تا °C1160) پخت پوکه صورت گرفت و دمای مناسب °C1140 تا °C1150 به دست آمد. در این دما و درصد، پوکه حاصله دارای کمترین دانسیته به مقدار kg/m3265 و بیشترین در صد جذب آب به مقدار2/15% وزنی، با مقاومت فشاری MPa 8/0 بود.
کلمات کلیدی: باطله‌های کارخانه زغالشوئی زرند - پوکه صنعتی - دانسیته - درصد جذب آب - مقاومت فشاری

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production Of Lightweight Aggregate Using Zarand Coal Processing Plant Tailings

نویسندگان [English]

  • A. I. Mansouri 1
  • M. Tahmooresi 1
  • A. Ebrahimi 2
1 Assistant Professor, Dept. of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman
2 Kerman Polyethylene Industries, P.O. Box 76135-613, Kerman
چکیده [English]

Production of lightweight aggregate is usually done by different clayey materials. Some kinds of wastes can be utilized in its production. In this research, waste materials of Zarand coal processing plant waere added with the following percent 1, 2, 3, 4, 5, 6, 7, 8, 10, 15 and 20 to the raw material of Omranpars lightweight aggregate production plant and burned at 1140 °C for 5 minutes. Density, compressive strength and water absorption of produced samples were analyzed. FE- SEM images of some samples were taken for further studies. Results show that the optimum percentage of Coal waste addition is 3%, which was tested between 1110 °C to1160 °C to find the optimum burning temperature. The optimum temperature was between 1140 °C to 1150 °C. At this temperature and coal waste addition percentage density was 265kg/m3, water absorption was 15.2% and compressive strength was 0.8 MPa.

کلیدواژه‌ها [English]

  • Wastes of coal
  • Lightweight aggregate
  • Water absorption
  • Compressive strength
[1]     Mansouri, A. I., Tahmooresi, M., and Moghtader, M. (2009). “Alumina extraction from coal waste ash of zarand coal washing plant”. Iranian Journal of Chemistry & Chemical Engineering, 28(1): 131-138.
[2]     Mansouri, A. I., Tahmooresi, M., and Sarrafi, A. (2011). “Optimization of leaching and desilication stages in alumina extraction from Zarand coal washing plant wastes”. Journal of Separation Science and Engineering, 2(2): 131-141.
[3]     Mansouri, A. I., khezripour, S., Tahmooresi, M., Lashkari,  B., and Golzary, M. R. (2017). “Utilization of remained mud from process of coal wastes Zarand company as an additive to cement”. Concrete Research Journal, 20(2): 69-77.
[4]     Murray, H. H. (2007). “Applied Clay Mineralogy”. First Edition, Elsevier, 179-180.
[5]     Waranke, W. E. (1975). “Production lightweight aggregate”. United States Patent.
[6]     Kareem, S.,  Khafaji1, T.,  and Abed Al-Majed, E. (2016). “Synthesis of Light expanded clay aggregates from Iraqi raw materials”. International Journal of Scientific & Engineering Research, 7(4): 690-696.
[7]     Wilson, H., Conley, J. E., and Klinefelter, T. A. (1942). “Production of Lightweight Concrete Aggregates from Clays, Shales, Slates and other Materials”. United States Bureau of Mines (USBM), 121: 369-377.
[8]     Riley, M. (1951). “Relation of Chemical Properties to the Bloating of Clays”. Journal of The American Ceramic Society, 4: 121-128
[9]     Cheeseman, C. R, and Virdi, G. S. (2005). “Properties and Microstructure of Lightweight Aggregate Produced from Sintered Sewage Sludge Ash”. Resources Conservation & Recycling, 45: 18-30.
[10]  Tsai, C. C., Wang, K. S., and Chio, L. G. (2006). “Effect of SiO2-Al2O3-Flux Ratio Change on the Bloating Characteristics of Lightweight Aggregate Material Produced from Recycled Sewage Sludge”. Journal of Hazardous Materials, B134: 87-93.
[11]  Xingrun, W.,  Yiying, J.,  Zhiyu, W., Yongfeng, N., Qifei, H., and  Qi, W. ( 2009). “Development of lightweight aggregate from dry sewage sludge and coal ash”.  Waste Management, 29: 1330–133.
[12]  Kourti, I., and Cheeseman, C. R. (2010). “Properties and Microstructure of Lightweight Aggregate Produced from Lignite Coal Fly Ash and Recycled Glass”. Resources Conservation and Recycling, 54: 769-775.
[13]  Hamidi-Ravari, M., Sarafi, A., Afsahi, and Ataei, M. (2013). “Studing the effect of clay compounds on production of light aggregate and preliminary simulation of the sintering kiln”. Shahid Bahonar University of Kerman Faculty of Engineering, Department of Chemical Engineering, 1-76.
[14]  Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.
[15]  Specification for aggregates from natural sources for concrete.
[16]  Aftabi, A., Shojaei, S. M., and Kazerani Nezhad, R. (2015). “Geochemical and environmental baseline ofmajor and trace elements in Zarand coals, southeastern Iran”. Environmental Earth Sciences,73: 7457–7476.