اثر آهنگ هوادهی و عمق کف بر کارآیی فلوتاسیون در سلول‌های خودهواده صنعتی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، فراوری مواد معدنی، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

2 دانشیار، فراوری مواد معدنی، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

3 هیات علمی پژوهشی، بخش شیمی و مهندسی شیمی، دانشگاه چالمرز، گوتنبرگ، سوئد

چکیده

بازیابی کلی سلول فلوتاسیون به بازیابی ناحیه پالپ و ناحیه کف بستگی دارد. از جمله عوامل اثرگذار بر بازیابی ناحیه کف، زمان ماند کف است که رابطه عکس با بازیابی کف و بازیابی کلی فلوتاسیون دارد. از سوی دیگر زمان ماند کف به آهنگ هوادهی سلول فلوتاسیون و عمق کف وابسته است. آهنگ هوادهی در سلول‌های هوادهی شده، پارامتری مستقل است اما در سلول‌های خودهواده به متغیرهای مختلفی از جمله عمق کف بستگی دارد، بنابراین تنظیم آن پیچیده‌تر و دشوارتر از سلول‌های هوادهی شده است. از اینرو در این تحقیق تلاش شده است تا تاثیر عمق کف و آهنگ هوادهی بر سرعت ظاهری گاز، زمان ماند کف و کارآیی متالورژیکی سلول فلوتاسیون (بازیابی جرمی کنسانتره و نسبت غنی‌شدگی) بررسی شود. با آشکار شدن ارتباط بین این پارامترها و محدودیت‌های تنظیم عمق کف و آهنگ هوادهی، دانش بیشتر با هدف بهره‌برداری مناسب‌تر از این نوع سلول‌ها فراهم می‌شود.آزمایش‌ها در یک سلول فلوتاسیون خودهواده 50 متر مکعبی در کارخانه کنسانتره شماره 6 سنگ آهن گل گهر سیرجان انجام شد. نتایج نشان داد که تغییرات عمق کف اگر چه سبب تغییر آهنگ هوادهی شد اما تغییرات آهنگ هوادهی اثر قابل ملاحظه‌ای بر زمان ماند کف و در نتیجه کارآیی متالورژیکی سلول فلوتاسیون نداشت. همچنین در این نوع سلول‌ها، عمق کف گزینه مناسبی برای تغییر آهنگ هوادهی و سرعت ظاهری گاز نیست زیرا محدوده تغییرات سرعت ظاهری گاز با تغییرات عمق کف در مقیاس صنعتی، کم بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of gas rate and froth depth on flotation performance of an industrial self-aerated cell

نویسندگان [English]

  • H. Naghavi 1
  • A. Dehghani 2
  • M. Karimi 3
1 Ph.D Student, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd
2 Associate Professor, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd
3 Postdoctoral Research, Dept. of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
چکیده [English]

The overall flotation recovery depends on the recovery in the pulp zone as well as recovery in the froth zone. The froth retention time affects the froth recovery and it has an inverse relationship with both froth recovery and overall recovery. On the other hand, the froth retention time depends on gas rate and froth depth. The gas rate is an independent factor in induced-air flotation machines, whereas in self-aerated cells it depends on various variables and the froth depth is one of them with significant effect. Therefore, adjusting the gas rate is more complicated and more difficult in the induced-air flotation machine. This study attempts to investigate the effects of froth depth and gas rate on superficial gas velocity, froth retention time and metallurgical performance of the cell. The operation of these types of cells can be improved, by understanding the relationship between these parameters particularity the adjustment of froth depth and gas rate. Experimental tests were carried out in a 50 m3 self-aerated cell in Gol Gohar iron ore processing plant. The results showed that although the froth depth variations, changed the gas rate, but the gas rate variations did not have a significant effect on the froth retention time and the metallurgical performance. Also, the froth depth was not a good option to change the gas rate and the superficial gas velocity in this type of flotation cells, because the range of superficial gas velocity variations was low when the froth depth was changed in industrial-scale.

کلیدواژه‌ها [English]

  • Self-aerated flotation cell
  • froth depth
  • gas rate
  • superficial gas velocity
  • froth retention time
Rahman, R. M., Ata, S., and Jameson, G. J. (2015). “Study of froth behavior in a controlled plant environment – Part 1: Effect of air flow rate and froth depth”. Minerals Engineering, 81: 152–160.
[2]   Yianatos, J. B., Moys, H. M., Contreras, F., and Villanueva, A. (2008). “Froth recovery of industrial flotation cells”. Minerals Engineering, 21: 817–825.
[3]   Rahman, R. M., Ata, S., and Jameson, G. J. (2015). “Study of froth behavior in controlled plant environment – Part 2: Effect of collector and frother concentration”. Minerals Engineering, 81: 161–166.
[4]   Massinaei, M. (2008). “Hydrodynamic and Kinetic Characterization and Modeling of Industrial Columns in Rougher Flotation Circuits”. Ph.D. Thesis, Department of Mining Engineering, University of Tehran, Iran.
[5]   Venkatesan, L., Harris, A., and Greyling, M. (2014). “Optimization of air rate and froth depth in flotation using a CCRD factorial design – PGM case study”. Minerals Engineering, 66-68: 221-229.
[6]   Gorain, B. K., Franzidis, J. -P., and Manlapig, E. V. (1999). “The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data”. Minerals Engineering, 12 (3): 309-322.
[7]   Vinnett, L., Yianatos, J., and Alvarez, M. (2014). “Gas dispersion measurements in mechanical flotation cells: Industrial experience in Chilean concentrators”. Minerals Engineering, 57: 12-15.
[8]   Schwarz, S., and Alexander, S. (2006). “Gas dispersion measurements in industrial flotation cells”. Minerals Engineering, 19: 554-560.
[9]   Hadler, K., Greyling, M., Plint, N., and Cilliers, J. J. (2012). “The effect of froth depth on air recovery and flotation performance”. Minerals Engineering, 36-38: 248-253.
[10] Franzidis, J. -P., and Manlapig, E. V. (1999). “A new, comprehensive and useful model for flotation”. Proc, Proceedings of a Symposium held at the Annual SME Meeting, 413-423.
[11] Zheng, X., Johnson, N. W., and Franzidis, J. -P. (2006). “Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment”. Minerals Engineering, 19: 1191-1203.
[12] Yianatos, J., Henriquez, F. H., and Oroz, A. G. (2006). “Characterization of large size flotation cells”. Minerals Engineering, 19: 531-538.
[13] Yianatos, J., Bergh, L., Condori, P., and Aguilera, J. (2001). “Hydrodynamic and metallurgical characterization of industrial flotation banks for control purposes”. Minerals Engineering, 14(9): 1033-1046.
[14] Gomez, C. O., Acuna, C., and Finch, J. A. (2007). “Forcing Air Into Self-Aspirating Flotation Machines”. CIM, Toronto, Canada, 159-172.
[15] Girgin, E. H., Do, S., Gomez, C. O., and Finch, J. A. (2006). “Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell”. Minerals Engineering, 19: 201-203.
[16] Kind, P. (1796). “Design criteria and recent developments in large-capacity Wemco flotation cells”. Journal of the South African Institute of Mining and Metallurgy, 76(8): 345-358.
[17] Power, A., Franzidis, J. -P., and Manlapig, E. V. (2000). “The characterization of hydrodynamic conditions in industrial flotation cells”. 7th Mill Operators' Conference, Kalgoorlie, Western Australia, 243-256.
[18] Shean, B. J., and Cilliers, J. J. (2011). “A review of froth flotation control”. International Journal of Mineral Processing, 100: 57-71.
[19] Vera, M. A., Franzidis, J. -P., and Manlapig, E. V. (1999). “Simultaneous determination of collection zone rate constant and froth zone recovery in a mechanical flotation environment”. Minerals Engineering, 12(10): 1163-1176.
[20] Harris, A., Venkatesan, L., and Greyling, M. (2013). “A practical approach to plant scale flotation optimization”. The Journal of The Southern African Institute of Mining and Metallurgy, 13: 263-272.
[21] Gorain, K., Franzidis, J. P., and Manlapig, E. V. (2000). “Flotation Cell Design: Application of Fundamental Principles”. Encyclopedia of Separation Science, Vol II, Academic Press, 1502-1512.
[22] Yianatos, J. B., Larenas, J. M., Moys, M. H., and Diaz, F. J. (2008). “Short time mixing response in a big flotation cell”. International Journal of Mineral Processing, 89: 1-8.
[23] Yianatos, J., Contreras, F., and Diaz, F. (2010). “GAS holdup and RTD measurement in an industrial flotation cell”. Minerals Engineering, 23: 125–130.
[24] Vinnett, L., Contreras, F. and Yianatos, J., 2012. “Gas dispersion pattern in mechanical flotation cells”. Minerals Engineering, 26: 80-85.
[25] Yianatos, J. B., and Henriquez, F. (2007). “Boundary conditions for gas rate and bubble size at the pulp–froth interface in flotation equipment”. Minerals Engineering, 20: 625-628.
[26] Pérez-Garibay, R., Estrada-Ruiz, R. H., and Gallegos-Acevedo, P. M. (2010). “Relationship between the bubble surface flux that overflows and the mass flow rate of solids in the concentrate of flotation processes”. Minerals Engineering, 23: 541-548.
[27] Deglon, D. A., Egya-Mensah, D., and Franzidis, J. P. (2000). “Review of Hydrodynamics and Gas Dispersion in Flotation cells on South African Platinum Concentrators”. Minerals Engineering, 13(2): 235-244.
[28]   Shabalala, N. Z. P., Harris, M., Leal Filho, L. S., and Deglon, D. A. (2011). “Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell”. Minerals Engineering, 24: 1448-1453.