Rahman, R. M., Ata, S., and Jameson, G. J. (2015). “Study of froth behavior in a controlled plant environment – Part 1: Effect of air flow rate and froth depth”. Minerals Engineering, 81: 152–160.
[2] Yianatos, J. B., Moys, H. M., Contreras, F., and Villanueva, A. (2008). “Froth recovery of industrial flotation cells”. Minerals Engineering, 21: 817–825.
[3] Rahman, R. M., Ata, S., and Jameson, G. J. (2015). “Study of froth behavior in controlled plant environment – Part 2: Effect of collector and frother concentration”. Minerals Engineering, 81: 161–166.
[4] Massinaei, M. (2008). “Hydrodynamic and Kinetic Characterization and Modeling of Industrial Columns in Rougher Flotation Circuits”. Ph.D. Thesis, Department of Mining Engineering, University of Tehran, Iran.
[5] Venkatesan, L., Harris, A., and Greyling, M. (2014). “Optimization of air rate and froth depth in flotation using a CCRD factorial design – PGM case study”. Minerals Engineering, 66-68: 221-229.
[6] Gorain, B. K., Franzidis, J. -P., and Manlapig, E. V. (1999). “The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data”. Minerals Engineering, 12 (3): 309-322.
[7] Vinnett, L., Yianatos, J., and Alvarez, M. (2014). “Gas dispersion measurements in mechanical flotation cells: Industrial experience in Chilean concentrators”. Minerals Engineering, 57: 12-15.
[8] Schwarz, S., and Alexander, S. (2006). “Gas dispersion measurements in industrial flotation cells”. Minerals Engineering, 19: 554-560.
[9] Hadler, K., Greyling, M., Plint, N., and Cilliers, J. J. (2012). “The effect of froth depth on air recovery and flotation performance”. Minerals Engineering, 36-38: 248-253.
[10] Franzidis, J. -P., and Manlapig, E. V. (1999). “A new, comprehensive and useful model for flotation”. Proc, Proceedings of a Symposium held at the Annual SME Meeting, 413-423.
[11] Zheng, X., Johnson, N. W., and Franzidis, J. -P. (2006). “Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment”. Minerals Engineering, 19: 1191-1203.
[12] Yianatos, J., Henriquez, F. H., and Oroz, A. G. (2006). “Characterization of large size flotation cells”. Minerals Engineering, 19: 531-538.
[13] Yianatos, J., Bergh, L., Condori, P., and Aguilera, J. (2001). “Hydrodynamic and metallurgical characterization of industrial flotation banks for control purposes”. Minerals Engineering, 14(9): 1033-1046.
[14] Gomez, C. O., Acuna, C., and Finch, J. A. (2007). “Forcing Air Into Self-Aspirating Flotation Machines”. CIM, Toronto, Canada, 159-172.
[15] Girgin, E. H., Do, S., Gomez, C. O., and Finch, J. A. (2006). “Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell”. Minerals Engineering, 19: 201-203.
[16] Kind, P. (1796). “Design criteria and recent developments in large-capacity Wemco flotation cells”. Journal of the South African Institute of Mining and Metallurgy, 76(8): 345-358.
[17] Power, A., Franzidis, J. -P., and Manlapig, E. V. (2000). “The characterization of hydrodynamic conditions in industrial flotation cells”. 7th Mill Operators' Conference, Kalgoorlie, Western Australia, 243-256.
[18] Shean, B. J., and Cilliers, J. J. (2011). “A review of froth flotation control”. International Journal of Mineral Processing, 100: 57-71.
[19] Vera, M. A., Franzidis, J. -P., and Manlapig, E. V. (1999). “Simultaneous determination of collection zone rate constant and froth zone recovery in a mechanical flotation environment”. Minerals Engineering, 12(10): 1163-1176.
[20] Harris, A., Venkatesan, L., and Greyling, M. (2013). “A practical approach to plant scale flotation optimization”. The Journal of The Southern African Institute of Mining and Metallurgy, 13: 263-272.
[21] Gorain, K., Franzidis, J. P., and Manlapig, E. V. (2000). “Flotation Cell Design: Application of Fundamental Principles”. Encyclopedia of Separation Science, Vol II, Academic Press, 1502-1512.
[22] Yianatos, J. B., Larenas, J. M., Moys, M. H., and Diaz, F. J. (2008). “Short time mixing response in a big flotation cell”. International Journal of Mineral Processing, 89: 1-8.
[23] Yianatos, J., Contreras, F., and Diaz, F. (2010). “GAS holdup and RTD measurement in an industrial flotation cell”. Minerals Engineering, 23: 125–130.
[24] Vinnett, L., Contreras, F. and Yianatos, J., 2012. “Gas dispersion pattern in mechanical flotation cells”. Minerals Engineering, 26: 80-85.
[25] Yianatos, J. B., and Henriquez, F. (2007). “Boundary conditions for gas rate and bubble size at the pulp–froth interface in flotation equipment”. Minerals Engineering, 20: 625-628.
[26] Pérez-Garibay, R., Estrada-Ruiz, R. H., and Gallegos-Acevedo, P. M. (2010). “Relationship between the bubble surface flux that overflows and the mass flow rate of solids in the concentrate of flotation processes”. Minerals Engineering, 23: 541-548.
[27] Deglon, D. A., Egya-Mensah, D., and Franzidis, J. P. (2000). “Review of Hydrodynamics and Gas Dispersion in Flotation cells on South African Platinum Concentrators”. Minerals Engineering, 13(2): 235-244.
[28] Shabalala, N. Z. P., Harris, M., Leal Filho, L. S., and Deglon, D. A. (2011). “Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell”. Minerals Engineering, 24: 1448-1453.