[1] Simate, G. S., and Ndlovu S. (2014). “Acid mine drainage: Challenges and opportunities”. Journal of Environmental Chemical Engineering, 2(3): 1785-1803.
[2] Gitari, W. M. (2014). “Attenuation of metal species in acidic solutions using bentonite clay: implications for acid mine drainage remediation”. Toxicological & Environmental Chemistry, 96(2): 201-217.
[3] Tang, W., He, D., Zhang, C., and Waite, T. D. (2017). “Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI)”. Water Research, 121: 302-310.
[4] Benatti, C. T., Tavares, C. R. G., and Lenzi, E. (2009). “Sulfate removal from waste chemicals by precipitation”. Journal of Environmental Management, 90(1): 504-511.
[5] Kaksonen, A. H., Franzmann, P. D., and Puhakka, J. A. (2003). “Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater”. Biodegradation, 14(3): 207-217.
[6] Maree, J. P., Strobos, G., Greben, H., Netshidaulu, E., Steyn, E., Christie, A., Günther, P., and Waanders, F. B. (2004). “Treatment of acid leachate from coal discard using calcium carbonate and biological sulphate removal”. Mine Water and the Environment, 23(3): 144-151.
[7] Cogho, V., and van Niekerk. A. (2009). “Optimum coal mine water reclamation project”. International Mine Water Conference, Pretoria, South Africa, 415-430.
[8] Ferreira, B. C. S., Lima, R. M. F., and Leão, V.A. (2011). “Remoção de sulfato de efluentes industriais por precipitação”. Eng Sanit Ambient, 16(4): 361-368.
[9] Ford, R. G., Scheinost, A. C., and Sparks, D. L. (2001). “Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces”. Advances in Agronomy, 74(4): 41-62.
[10] Ishiguro, M., and Nakajima, T. (2000). “Hydraulic conductivity of an allophanic Andisol leached with dilute acid solutions”. Soil Science Society of America Journal, 64(3): 813-818.
[11] Ishiguro, M., Nakaishi, K., and Nakajima, T. (2003). “Saturated hydraulic conductivity of a volcanic ash soil affected by repulsive potential energy in a multivalent anionic system”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230(1-3): 81-88.
[12] Peak, D., Ford, R. G. and Sparks, D. L. (1999). “An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite”. Journal of Colloid and Interface Science, 218(1): 289-299.
[13] Wijnja, H., and Schulthess, C. P. (2000). “Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr) oxide surfaces”. Journal of Colloid and Interface Science, 229(1): 286-297.
[14] Chen, ong-gui, Yong, H. E., Ye, W., Sui, W., and Xiao, M. (2013). “Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite”. Transactions of Nonferrous Metals Society of China, 23(11): 3482-3489.
[15] Atia, A. A. (2008). “Adsorption of chromate and molybdate by cetylpyridinium bentonite”. Applied Clay Science, 41(1–2): 73-84.
[16] Taha, A. A., Shreadah, M. A., Ahmed, A. M., and Heiba, H. F. (2016). “Multi-component adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination”. Journal of Environmental Chemical Engineering, 4(1): 1166-1180.
[17] Sen, T. K., and Gomez, D. (2011). “Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite”. Desalination, 267(2–3): 286-294.
[18] Heller-Kallai, L. (2013). “Thermally Modified Clay Minerals, in Developments in Clay Science”. Developments in Clay Science, 1: 289-308.
[19] Molina, C., Casas, J., Pizarro, A. H., and Rodriguez, J. J. (2011). “Pillared Clays as green chemistry catalysts: application to wastewater treatment”. Clay: Types, Properties and Uses, 435-474.
[20] Cool, P., and Vansant, E. (1998). “Pillared clays: preparation, characterization and applications”. In Synthesis, Springer, 265-288.
[21] Miri, B., Bergaoui, L., and Ghorbel, A. (2011). “Synthesis and characterization of Al-pillared montmorillonite in presence of Mn (II)”. Applied Clay Science, 53(4): 691-695.
[22] Gil, A., Korili, S. A., Trujillano, R., and Vicente, M. A. (Eds.) (2010). “Pillared clays and related catalysts”. Springer Science & Business Media, pp. 522.
[23] Olaya, A., Moreno, S., and Molina, R.( 2009). “Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: Characterization and catalytic activity”. Applied Catalysis A: General, 370(1-2): 7-15.
[24] Kloprogge, J. T., Duong, L. V., and Frost, R. L. (2005). “A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels”. Environmental Geology, 47(7): 967-981.
[25] Olaya, A., Moreno, S., and Molina, R. (2009). “Synthesis of pillared clays with aluminum by means of concentrated suspensions and microwave radiation”. Catalysis Communications, 10(5): 697-701.
[26] Sanabria, N. R., Centeno, M. A., Molina, R., and Moreno, S. (2009). “Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: synthesis and catalytic activity”. Applied Catalysis A: General, 356(2): 243-249.
[27] Tomul, F. (2011). “Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite”. Applied Surface Science, 258(5): 1836-1848.
[28] Tomul, F. (2016). “The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol”. Applied Clay Science,120: 121-134.
[29] Novikova, L, Philippe, A., Claude, F., Gregory Chatel, F., Jérôme, and Larisa, B. (2016). “Effect of low frequency ultrasound on the surface properties of natural aluminosilicates”. Ultrasonics sonochemistry, 31: 598-609.
[30] Sassi, H., Gwendoline, L., Hédi, B. A., Abdelaziz, G., Mohamed, R. J, and Jacques, B. (2018). “Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation”. Frontiers of Environmental Science & Engineering, 12(1): 2.
[31] Magriotis, Z. M., Leal, P. V., Priscila, F., Papini, R. M., Viana, P. R., and Arroyo, P. A. (2014). “A comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolite”. Applied Clay Science, 91: 55-62.
[32] Liu, Y. N., Dong, C., Wei, H., Yuan, W., and Li, K. (2015). “Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): kinetics, equilibrium and mechanism”. Applied Clay Science, 118: 301-307.
[33] Timofeeva, M. N., Khankhasaeva, S. T., Chesalov, Y. A. , Tsybulya, S. V., Panchenko, V. N., and Dashinamzhilova, E. T. (2009). “Synthesis of Fe, Al-pillared clays starting from the Al, Fe-polymeric precursor: Effect of synthesis parameters on textural and catalytic properties”. Applied Catalysis B: Environmental, 88(1-2): 127-134.
[34] Manohar, D., Noeline, B., and Anirudhan, T. (2006). “Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase”. Applied Clay Science, 31(3-4): 194-206.
[35] Mohapatra, D., Mishra, D., Chaudhury, G. R., and Das, R. P. (2007). “Arsenic adsorption mechanism on clay minerals and its dependence on temperature”. Korean Journal of Chemical Engineering, 24(3): 426-430.
[36] Wu, C. H., Kuo, C. Y., Lin, C. F., and Lo, S. L. (2002). “Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm”. Chemosphere, 47(3): 283-292.
[37] Sadik, R., Lahkale, R., Hssaine, N., ElHatimi, W., Diouri, M., and Sabbar, E. (2015). “Sulfate removal from wastewater by mixed oxide-LDH: Equilibrium, kinetic and thermodynamic studies”. Journal of Material Environment and Science, 6(10): 2895-2905.
[38] Horányi, G. (2003). “Investigation of the specific adsorption of sulfate ions on powdered TiO2”. Journal of Colloid and Interface Science, 261(2): 580-583.
[39] Alves, M. and Lavorenti, A. (2004). “Sulfate adsorption and its relationships with properties of representative soils of the São Paulo State, Brazil”. Geoderma, 118(1-2): 89-99.
[40] Delfosse, T., Delmelle, P., and Delvaux, B. (2006). “Sulphate sorption at high equilibrium concentration in Andosols”. Geoderma, 136(3-4): 716-722.
[41] Khan, M. N., and Zareen, U. (2006). “Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water”. Journal of Hazardous Materials, 133(1-3): 269-275.
[42] Li, W. G., Gong, X. J., Wang, K., Zhang, X. R., and Fan, W. B. (2014). “Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon”. Bioresource Technology, 165: 166-173.
[43] Pimentel, P. M., Melo, M. A. F., Melo, D. M. A., Assuncao, A. L. C., Henrique, D. M., Silva Jr, C. N., and Gonzalez, G. (2008). “Kinetics and thermodynamics of Cu (II) adsorption on oil shale wastes”. Fuel Processing Technology, 89(1): 62-67.