تخمین قیمت نفت خام اوپک با استفاده از روش‌های درخت دوتایی، سری زمانی و شبکه‌های عصبی مصنوعی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، گروه مدیریت، دانشگاه پیام نور، مرکز غرب تهران، تهران

2 کارشناسی ارشد، گروه مدیریت، دانشگاه پیام نور، مرکز غرب تهران، تهران

چکیده

قیمت نفت مهم‌ترین و تاثیرگذارترین پارامتر اقتصادی در فرایند ارزیابی پروژه‌های نفتی است. عدم قطعیت قیمت نفت متاثر از عواملی مانند مسائل سیاسی، میزان عرضه و تقاضا، پیشرفت تکنولوژی و نظایر آن‌ها می‌باشد به گونه‌ای که ارزیابی یک طرح نفتی بدون در نظر گرفتن این عدم قطعیت‌ها قابل اطمینان نبوده و در شرایطی موجب گمراهی ارزیابان، مدیران و صاحبان پروژه‌های نفتی می‌شود. برای رفع این مشکل محققان فراوانی سعی در ارائه مدل‌های نوین و هوشمند تخمین قیمت نفت با استفاده از روش‌های منطق فازی، شبکه‌های عصبی و غیره کرده‌اند. این روش‌ها علاوه بر دقت بالا موجب سهولت و تسریع در امر تخمین می‌شوند. در تحقیق حاضر نیز با توجه به اهمیت مساله پیش‌بینی قیمت نفت، داده‌های قیمت نفت خام اوپک در خلال سال‌های 2013 تا 2016 به صورت هفتگی جمع‌آوری شده و با استفاده از روش‌های شبکه عصبی مصنوعی، توابع سری‌ زمانی و درخت دوتایی مدل‌هایی برای تخمین آن ارائه شد. مقایسه نتایج بدست آمده از مدل سازی روند تغییرات قیمت نفت نشان داد که برآورد صورت گرفته توسط روش شبکه عصبی به واقعیت نزدیکتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of OPEC crude oil price using binomial tree, time series and artificial neural networks

نویسندگان [English]

  • B. Lari Semnani 1
  • Simin Khalili 2
1 Assistant Professor, Dept. of Business Administration, Payame Noor University (PNU), Tehran
2 M.Sc Student, Dept. of Business Administration, Payame Noor University (PNU), Tehran
چکیده [English]

Oil price is the most important and effective economic parameter during the course of oil projects evaluation process. Oil price uncertainty is affected by some factors such as political issues, supply and demand, advancement of technology etc. Therefore, evaluating an oil project is unreliable unless these uncertainties are taken into account and in some circumstances, not doing so may mislead the oil projects evaluators, managers and shareholders. To solve this problem, many researchers have tried to present intelligent models for estimating oil prices using fuzzy logic, neural networks, etc. In addition to their high accuracy, these methods gives easier and faster estimation. In the present study, taking the importance of the oil price prediction into account, OPEC crude oil data were collected weekly during 2013-2016, and some prediction models were presented using artificial neural network method, time series functions and binomial tree. Comparing the results obtained from the three models and those of the real data showed that the estimation made by neural network method is much more reliable.

کلیدواژه‌ها [English]

  • Oil price
  • Estimation
  • Artificial neural network
  • Binomial tree
  • Time serie
[1]     Chiromaa, H., Abdulkareema, S., and Herawanb, T. (2015). “Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction”. Applied Energy, 142: 266–273.
[2]     Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). “Option Pricing: A Simplified Approac”. Journal of Financial Economics, 7: 229-263.
[3]     Gao, S., and Lei, Y. (2017). “A new approach for crude oil price prediction based on stream learning”. Geoscience Frontiers, 8: 183-187.
[4]     Luo, H., Liu, X., and Wang, S. (2017). “Based on SARIMA-BP hybrid model and SSVM model of international crude oil price prediction research”. ANZIAM journal, 58: 143-161.
[5]     Wang, M., Tian, L., and Zhou, P. (2018). “A novel approach for oil price forecasting based on data fluctuation network”. Energy Economics, 71: 201-212.
[6]     www.infomine.com/opec price, Comprehensive information on mining, the mining industry, mining technology and mineral exploration, the price and cost of the metals or mining activities.
[7]     Zhang, W., Yin, M., and Luo, N. (2016). “Forecasting Crude Oil Price Using a Hybrid Model by Bidirectional Extreme Learning Machine”. Transylvanian Review, 24: 140-148.
[8]     Zhao, Y., Li, J., and Yu, L. (2017). “A deep learning ensemble approach for crude oil price forecasting”. Energy Economics, 66: 9-16.
[9]    نیرومند، ح. ع.؛ 1389؛"تجزیه وتحلیل سریهایزمانی". دانشگاه فردوسی مشهد، ص 408.
[10]  منهاج، م.؛ 1373؛"مبانی شبکههای عصبی". انتشارات دانشگاه صنعتی امیرکبیر تهران، ص 716.