بررسی کارایی مدل‌های رفتاری متداول خاک در پیش‌بینی نشست سطح زمین ناشی از حفر تونل در خاک‌های درشت‌ دانه به روش اجزای محدود

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهنسی معدن، دانشگاه بین المللی امام خمینی (ره)

2 دانشیار، گروه مهندسی معدن، دانشگاه بین المللی امام خمینی (ره)

چکیده

با توجه به رشد روز افزون جمعیت و نیاز به ساخت زیربناهایی برای حمل و نقل سریع و آسان، ساخت تونل‌ اهمیت ویژه‌ای پیدا کرده است. حفر تونل‌های شهری با عبور از زیر ساختمان‌های متعدد و به علت ترخیص تنش و ایجاد تغییر‌شکل‌های الاستیک و پلاستیک باعث ایجاد نشست‌هایی در سطح زمین می‌شود. این نشست‌ها در صورتی که کنترل شده نباشد به سازه‌های سطحی آسیب و خسارات جبران ناپذیری وارد خواهند کرد. در نتیجه پیش‌بینی صحیح نشست بخش مهمی از مرحله امکان‌سنجی ساخت تونل در مناطق شهری است. امروزه برای آنالیز و طراحی تونل‌ها از روش‌های متعددی استفاده می‌شود که معمولا برای تونل‌های شهری که در اعماق کم و در زمین‌های نرم اجرا می‌شوند، بهترین روش استفاده از روش‌های عددی است. بررسی اثرات حفاری بر توزیع تنش‌ها در اطراف تونل‌ها و همچنین بررسی نشست‌های سطحی نیز در زمین‌های نرم بسیار مهم است که باید بیشتر مورد توجه قرار گیرد. در این تحقیق به مدلسازی دوبعدی تونل مدرس در پروژه تونل آرش- اسفندیار- نیایش با نرم‌افزار پلکسیس پرداخته شده است که این تونل در منطقه سه شهرداری تهران قرار دارد. بعد از مدلسازی عددی با مدل رفتاری خاک سخت‌شونده، نشست‌های سطح زمین تعیین شده و سپس با نتایج حاصل از مدلسازی با مدل رفتاری موهر-کولمب مقایسه شده است. بر اساس بررسی‌های انجام شده این نتایج حاصل شد که حفاری تونل مدرس، با توجه به نتایج مدلسازی‌ها و انجام مقایسه با نتایج پایش‌های انجام گرفته، با به کار‌گیری روش حفر مرحله‌ای NATM و بهره بردن از المان‌های تقویت خاک همچون فورپولینگ، نیل و میکروپایل، می‌تواند به خوبی و به صورت کنترل شده و ایمن انجام گیرد و باید در مقاطع مشابه در تونل از این تجربه استفاده شود. همچنین استفاده از مدل رفتاری خاک سخت‌شونده نسبت به مدل موهر-کولمب برای مدلسازی تونل در خاک درشت دانه تهران که شرایطی مشابه خاک این تونل دارد، مناسب‌تر است. حداکثر نشست سطح زمین در مدلسازی با مدل رفتاری خاک سخت شونده و مدل موهر کولمب به ترتیب 23/37 و 27/04 میلی‌متر به دست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the performance of common models for soil behaviour on prediction of ground surface settlement induced by tunneling in coarse-grained soils using finite element method

نویسندگان [English]

  • F. Kamkar 1
  • M. Hosseini 2
1 M.Sc Student, Dept. of Mining Engineering, Imam Khomeini International University
2 Associate Professor, Dept. of Mining Engineering, Imam Khomeini International University
چکیده [English]

Due to the population growth and the increasing demand for the construction of the infrastructure necessary for comfortable and fast transportation, tunneling has become especially important. Tunneling in urban areas by passing underneath several buildings causes subsidence due to stress relief and development of elastic and plastic deformations. If these subsidences are not controlled, the structures on the ground will be seriously damaged. Thus, proper estimation of subsidence is an important task when doing tunneling feasibility in urban areas. Nowadays, several methods are used for tunnel analysis and design and for urban tunnels, which excavated in shallow and soft grounds, the best way is using numerical methods. The study of excavation impact on stress distribution around tunnels as well as the study of ground surface subsidence in soft grounds are extremely important and should be deeply taken into account. This research addressed the 2D modeling of Modarres Tunnel of Arash-Esfandiyar-Niyayesh Tunnel Project by PLAXIS software. This tunnel is located in The Third Region of Tehran Municipality. The subsidences were determined through numerical modeling by hardening soil behavioral model, and, then, were compared to the results of the modeling by Mohr-Coulomb behavioral model. it was concluded that the excavation of Modarres tunnel, considering the modeling results and comparing them to the monitoring data, could be done in a controlled and safe manner by using NATM sequential excavation method and by utilizing the soil reinforcement elements such as fore-poling, nailing and micro-piles, and this experience should be used in similar tunneling sections. Furthermore, the use of hardening soil model was more appropriated for modeling the tunnel in the coarse-grained soil in Tehran which had the same conditions as this tunnel, than the Mohr-Coulomb model. The maximum subsidence in the modeling with the hardening soils model and the Mohr Coulomb model was 23.37 mm and 27.04 mm, respectively.

کلیدواژه‌ها [English]

  • Arash-Esfandiyar-Niyayesh Tunnel
  • numerical modeling
  • Modarres Tunnel
  • urban tunnel
  • subsidence
[1]     Chakeri, H., Ozcelik, Y., and  Unver, B. (2013). “Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB”. Tunnelling and Underground Space Technology, 36: 14-23.
[2]     Fasihnikoutalab, M. H., Huat, B. B. K., Asadi, A., and Daneshmand, S. (2012). “Numerical stability analysis of tunnel by PLAXIS”. Electronic Journal of Geotechnical Engineering,  17: 451-461.
[3]     Papastamos, G., Stiros, S., Saltogianni, V., and Kontogianni, V. (2015). “3-D strong tilting observed in tall, isolated brick chimneys during the excavation of the Athens Metro”. Applied Geomatics, 20: 115-121.
[4]     Melis, M.,  Medina, L., and Rodríguez, J. M. (2002). “Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension”. Canadian Geotechnical Journal,  39(6):  1273-1287.
[5]     Migliazza, M., Chiorboli, M., and Giani, G. P. (2009). “Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of Milan underground”. Computers and Geotechnics, 36: 113–124.
[6]     Yahya, S. M., and Abdullah, R. A. (2014). “A Review on Methods of Predicting Tunneling Induced Ground Settlements”. Electronic Journal of Geotechnical Engineering, 19: 5813-5826.
[7]     Peck, R. B. (1969). “Deep excavation and tunneling in soft ground”. In proceeding of 7th International Conference on SMFE, Mexico, 225-290.
[8]     Möller, S. C. (2006). “Tunnel induced settlements and structural forces in linings”.  University of Stuttgart - Institute of  Geotechnik Stuttgart, Germany, 108-125.
[9]     فلاح‌زاده شهرکتی، م.؛ 1391؛ "مدلسازی عددی دوراهی تونلهای شهری- مطالعه موردی تونل نیایش در آبرفت درشتدانه تهران". پایان‌نامه کارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران و محیط‌زیست، دانشگاه تربیت مدرس.
[10]  Kuesel, T. R., King, E. H., and  Bickel, J. O.  (2012). “Tunnel engineering handbook”.  Springer Science & Business Media.
[11]  Peck, R. B.,  Hendron, A., and  Mohraz, B. (1972). “State of the art of soft-ground tunneling”. In  North American Rapid Excavation & Tunneling Conference proceeding, 259-286.
[12]  Gulvanessian, H., Calgaro, J. A., and Holický, M. (2002). “Designer’s guide to EN 1990: eurocode: basis of structural design”. Thomas Telford.
[13]  Obrzud, R. F. (2010). “On the use of the Hardening Soil Small Strain model in geotechnical practice”. Numerics in Geotechnics and Structures, 15-32.
[14]  Zimmermann, T., Truty, A., and Podles, K. (1985-2010). “Numerics in geotechnics and structures”. Elmepress International, Lausanne.
[15]  Ju, J. (2015). “Prediction of the Settlement for the Vertically Loaded Pile Group Using 3D Finite Element Analyses”. Marine Georesources & Geotechnology, 33(3): 264-271.
[16]  Cundall, P. (2008). “FLAC 3D Manual: a computer program for fast Lagrangian analysis of continua (Version 4.0)”. Minneapolis, Minnesota, USA.
[17]  رحمن‌نژاد، ا.؛ 1394؛ "اثر مدل رفتاری در نشست سطحی در تونلهای حفر شده به روش NATM". پایان‌نامه کارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس.
[18]  امیری، ح. ر.؛ 1395؛ "مدلسازی تونل با روش حفاری NATM در خاک ریزدانه". پایان‌نامه کارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس.
[19]  شریف زاده،م.؛ عفیفی پور،م.؛تسوجی زاده،م.؛ 1389؛"تاثیر طول گام و مراحل حفر در روش حفاری مرحله ای بر میزان نشست سطح زمین در خط 4 متروی تهران". نشریه علمی- پژوهشی مهندسی معدن،دوره 5، شماره 10،ص39-46.
[20]  ÇELİK, S. (2017). “Comparison of Mohr-Coulomb and Hardening Soil Models’ Numerical Estimation of Ground Surface Settlement Caused by Tunneling”. Igdir University Journal of the Institute of Science and Technology, 7(4): 95-102.
[21]  Mirsalari, S. E., Fatehi Marji, M., Gholamnejad, J., and Najafi, M. (2017). “A boundary element/finite difference analysis of subsidence phenomenon due to underground structures”. Journal of Mining and Environment8(2): 237-253.
[22]  Xie, X., Yang, Y., and Ji, M. (2016). “Analysis of ground surface settlement induced by the construction of a large-diameter shield-driven tunnel in Shanghai, China”. Tunnelling and Underground Space Technology, 51: 120-132.
[23]  مهندسین مشاور پژوهش عمران راهوار؛ 1394؛ "مطالعات زمینشناسی و ژئوتکنیک طرح زیرگذر آرش-اسفندیار- نیایش".
[24]  Berisavljevic, Z., Milenkovic, S., Berisavljevic, D.,  and Susicet, N. (2015). “Convergence Predictions and Primary Support Optimization of the Tunnel Progon”. Engineering Geology for Society and Territory, Springer, 6: 323-328.