[1] Nakhaei, F., Mosavi, M. R., Sam, A., and Vaghei, Y. (2012). “Recovery and grade accurate prediction of pilot plant flotation column concentrate: neural network and statistical techniques”. International Journal of Mineral Processing, 110–111: 140– 154.
[2] Shean, B. J., and Cilliers, J. J. (2011). “A review of froth flotation control”. International Journal of Mineral Processing, 100(3-4): 57-71.
[3] Bonifazi, G., Serranti, S., Volpe, F., and Zuco, R. (2001). “Characterization of flotation froth colour and structure by machine vision. Comput”. Geosciences, 27(9): 1111–1117.
[4] Yang, C., Xu, C., Mu, X., and Zhou, K. (2009). “Bubble size estimation using interfacial morphological information for mineral flotation process monitoring”. Transactions of Nonferrous Metals Society of China, 19: 694–699.
[5] Moolman, D. W., Eksteen, J. J., Aldrich, C., and Van Deventer, J. S. J. (1996). “The significance of flotation froth appearance for machine vision control”. International Journal of Mineral Processing, 48(3–4): 135–158.
[6] Morar, S. H., Harris, M. C., Bradshaw, D. J. (2012). “The use of machine vision to predict flotation performance”. Minerals Engineering, 36–38: 31–36.
[7] Moolman, D. M., Aldrich, C., and Van Deventer, J. S. J. (1995). “The interpretation of flotation froth surfaces by using digital image analysis and neural networks”. Chemical Engineering Science, 50: 3501–3513.
[8] Holtham, P. N., and Nguyen, L. K. (2002). “On-line analysis of froth surface in coal and mineral flotation using JKFrothCam”. International Journal of Mineral Processing, 64: 163–180.
[9] Kaartinen, J., Hatonen, J., Hyotyniemi, H., and Miettunen, J. (2006). “Machine vision based control of zinc flotation—a case study”. Control Engineering Practice, 14: 1455–1466.
[10] Vanegas, C., and Holtham, P. (2008). “On-line froth acoustic emission measurements in industrial sites”. Minerals Engineering, 21: 883–888.
[11] Aldrich, C., Marais, C., Shean, B. J., and Cilliers, J. J. (2010). “Online monitoring and control of froth flotation systems with machine vision: a review”. International Journal of Mineral Processing, 96: 1–13.
[12] Sadr-Kazemi, N., and Cilliers, J. J. (1997). “An image processing algorithm for measurement of flotation froth bubble size and shape distributions”. Minerals Engineering, 10(10): 1075–1083.
[13] Oestreich, J. M., Tolley, W. K., and Rice, D. A. (1995). “Development of a color sensor system to measure mineral compositions”. Minerals Engineering, 8(1–2): 31–39.
[14] Banford, A. W., Aktas, Z., and Woodburn, E. T. (1998). “Interpretation of the effect of froth structure on the performance of froth flotation using image analysis”. Powder Technology, 98(1): 61–73.
[15] Lin, B., Recke, B., Knudsen, J. K. H., and Jorgensen, S. B. (2008). “Bubble size estimation for flotation processes”. Minerals Engineering, 21: 539–548.
[16] Mehrshad, N., and Massinaei, M. (2011). “New image processing algorithm for measurement of bubble size distribution from flotation froth images”. Minerals & Metallurgical Processing Journal, 28(3): 146–150.