بررسی تاثیر مصرف آهن و اکسیدکننده بر انحلال کنسانتره گالن در محیط فلوئوروبوریک اسید

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)

2 استادیار گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)

3 دانشیار گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه زنجان

چکیده

استخراج سرب از کنسانتره فلوتاسیون سرب با استفاده از فلوئوروبوریک اسید مورد مطالعه قرار گرفت و به عنوان یک فرآیند بالقوه و امیدوارکننده برای جایگزینی روش‌های تولید پیرومتالورژیکی سرب بهینه‌سازی شد. محتوای سرب، روی و آهن کنسانتره با استفاده از روشXRF به ترتیب 57/66، 5/50 و 1/55 درصد بود. پنج عامل کنترلی شامل غلظت اولیه HBF4، مقدار آهن افزودنی، میزان  اکسیدکننده مصرفی، دمای واکنش و زمان واکنش هرکدام در چهار سطح با استفاده از روش تاگوچی در نظر گرفته شد. آرایه متعامد L16 و آنالیز واریانس (ANOVA) برای تعیین شرایط بهینه و مهم‌ترین عامل‌های موثر بر استخراج روی از کنسانتره گالن به کار گرفته شد. آنالیز واریانس مشخص کرد که مقدار عامل اکسیدکننده و مقدار افزودنی مصرف ‌شده به ترتیب موثرترین پارامترهای فروشویی­اند. بنا به مطالعات گذشته این نتیجه می‌تواند مرتبط با لزوم تشکیل و حضور فلوئوبورات فریک و همچنین اکسایش یون فروس به فریک در سیستم باشد. نتایج آزمایشات نشان داد که بیشیه استخراج سرب در شرایط بهینه غلظت اسید 5 مولار، آهن مصرفی 46/8 گرم بر لیتر، مصرف عامل اکسیده کننده 33/3 گرم در لیتر و در دمای 80 درجه سانتی­گراد و زمان انحلال 6 ساعت حاصل می ­شود. راندمان بازیابی سرب در شرایط بهینه که با روش تاگوچی پیش‌بینی شده بود، با موفقیت به میزان 94/65 درصد رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the effect of iron and oxidizer on dissolution of galena concentrate in fluoroboric acid

نویسندگان [English]

  • H.R. Niyazi 1
  • G.R. Karimi 2
  • D. Moradkhani 3
1 M.Sc Student, Dept. of Mining Engineering, Imam khomeini International University
2 Assistant Professor, Dept. of Mining Engineering, Imam khomeini International University
3 Associate Professor, Dept. of Mining Engineering, University of Zanjan
چکیده [English]

The extraction of Pb from galena concentrate using fluoroboric acid media was studied and optimized as a potentially promising process to replace lead pyrometallurgical producing processes. The lead, zinc and iron content of the galena concentrate investigated were 57.66%, 5.50% and 1.55% respectively. Five control factors, including initial HBF4 concentration, the addition of iron and oxidizer agent, the reaction temperature and reaction time were considered in four different levels using Taguchi technique. L16 orthogonal array and analysis of variance (ANOVA) were applied to determine the optimum conditions and most significant factors affecting the overall lead extraction from galena concentrate. Analysis of variance indicated that the amount of oxidizer agent used and iron usage were the most influential leaching parameters respectively. According to former studies this result can be related to necessity of formation and presence of ferric fluoborate and also oxidation of ferrous ion to ferric in the system. The optimum dissolution condition to maximize lead extraction were; acid concentration = 5 mol/l, additive usage = 46.8 wt. %, oxidizer agent usage = 3 volume percent, temperature = 80 ºC and time = 6 hrs. Lead recovery efficiency in the optimum conditions predicted by Taguchi method successfully reached to 94.651%.

کلیدواژه‌ها [English]

  • Hydrometallurgy
  • Galena concentrate
  • Fluoroboric Acid
  • Ferric Fluoborate
  • Optimization
[1]     International Lead and Zinc Study Group. (2016). “Lead and Zinc Statistics”. 61th Session, Press Release, ILZSG, 27-28 Oct, Lisbon, Portugal, 9-17.
[2]     Pecharromán, E., Álvarez, C., Frades, M., Pinedo, M.T., Díaz, G., Staley, A., Pusateri, J., and Johnson, E. (2015). “ECOLEADTM process: a clean technology to recover Lead and Silver from residues”. Proceedings of Pb-Zn, Düsseldorf, Germany, 1: 177-184.
[3]     Strunnikov, S. G., and Koz’min, YU. A. (2005).  “Hydrometallurgical Schemes of Lead Concentrate Processing”. Chemistry for Sustainable Development, 13: 483–490.
[4]     Maccagni, M., Nielsen, J., and Hymer, T. (2015). “The FLUBOR® Process: Pilot Tests Results”. Proceedings of Pb-Zn, Düsseldorf, 14-17 July, Germany, 399-406.
[5]     Bozzano, G., Dente, M., Pierucci, S., and Maccagni, M. (2011). “Modeling and Simulation of the Production of Lead and Elementary Sulphur fro,m Lead Sulphide Concentrates”. 21st European Symposium on Computer Aided Process Engineering, 1733-1737.
[6]     Demarthe, J. M., and Georgeaux, A. (1980). “Hydrometallurgical treatment of lead concentrates”. Proceedings of World Symposium on Metals and Environment Control, Las Vegas, Nevada, 426-444.
[7]     Lee, A. Y., Wethington, A. M., and Cole, E. R. (1986). “Hydrometallurgical process for producing Lead and elemental Sulphur from Galena concentrates”. BU Mines RI 9055, pp. 13.
[8]     Girgis, M., Ghali, E., and Wieckowski, A. (1986). “Electrochemical studies of lead deposition from acidic ammonium acetate solutions on different substrates”. Electrochimica Acta, 31: 681-689.
[9]     Paramguru, R. K., and Kammel, R. (1998). “Bed performance in the direct electrowinning of lead from suspension galena anodes”. Metallurgical Transactions B, 19 (1): 67-72.
[10] González-Domínguez, J. A., Peters, E., and Dreisinger, D. B. (1991). “The Refining of Lead by the Betts Process”. Journal of Applied Electrochemistry, 21: 189–202.
[11] Expósito, E., Iniesta, J., Gonzáles-García, J., Montiel,V., and Aldaz, A. (2001). “Lead electrowinning in an acid chloride medium”. Journal of Power Sources: 92: 260-266.
[12] Wang, S., Fang, Z., Wang, Y., and Chen,Y. (2003). “Electrogenerative leaching of galena with ferric chloride”. Minerals Engineering, 16 (9): 869−872.
[13] Balaz, P. (1996). “Influence of solid state properties on ferric chloride leaching of mechanically activated galena”. Hydrometallurgy, 40 (3): 359−368.
[14] Bastl, Z., and Balaz, P. (1993). “X-ray photoelectron spectroscopy study of galena dissolution in ferric chloride media”. Journal of Materials Science Letters, 12: 789−790.
[15] Luengos, M. A., Ambrosio, E., Bohe, A. E., and Pasquevich, D. M. (2000). “Thermal behavior of galena ore in the chloride atmosphere”. Journal of Thermal Analysis and Calorimetry, 59: 775−789.
[16] Dutrizac, J. E., and Chen, T. T. (1990). “The effect of the element sulphur reaction product on the leaching of galena in ferric chloride media”. Metallurgical Transactions B, 21: 935−943.
[17] Olper, M., and Maccagni, M. (1993). “The Production of Electrolytic Lead and Elemental Sulphur from Lead Sulphide Concentrates”. Proceedings of the Milton E. Woodworth (IV) International Symposium on Hydrometallurgy, Salt Lake City, UT, 1-5 August, USA, pp. 3.
[18] Yadav, K. K., Singh, D. K., Anitha, M., Varshaney, L., and Singh, H. (2013). “Studies on separation of rare earths from aqueous media by polyethersulfone beads containing D2EHPA as extractant”. Separation and Purification Technology, 118: 350–358.
[19] Adler, Y. P., Markova, E. V., and Granovsky, Y. V. (1975). “The Design of Experiments to Find Optimal Conditions”. Mir Publication, Moscow, pp. 287.
[20] Nian, C. Y., Yang, W. H., and Trang, Y. S. (1999). “Optimization of turning operations with multiple performance characteristics”. Journal of Materials Processing Technology, 95: 90–96.
[21] Taguchi, G., Yokoyama, Y., and Wu, Y. (1993). “Taguchi methods-design of experiments”. American Supplier Institute Press, Tokyo, Japan, pp. 330.
[22] Roy., R. K. (1990). “A primer on the taguchi method”. Van Nostrand Reinhold, New York, 7-17.
[23] Abali, Y., Colak, S., and Yapici, S. (1997). “The optimization dissolution of phosphate rock with Cl2–SO2 gas mixture in aqueous medium”. Hydrometallurgy, 46: 27–35.
[24] Chee, K. K., Wong, M. K., and Lee, H. K. (1996). “Optimization of microwave-assisted solvent extraction of polycyclic aromatic hydrocarbons in marine sediments using a microwave extraction system with high-performance liquid chromatography– fluorescence detection and gas chromatography–mass spectrometry”. Journal of Chromatogr. A, 723: 259–271.
[25] Dasgupta, K., Singh, D. K., Sahoo, D. K., Anitha, M., Awasthi, A., and Singh, H. (2014). “Application of Taguchi method for optimization of process parameters in decalcification of samarium-cobalt intermetallic powder”. Separation and Purification Technology, 124: 74–80.
[26] Nasab, M. E., Sam, A., and Milani, S. A. (2011). “Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction”. Hydrometallurgy, 106: 141–147.
[27] Taghizadeh, M., Ghasemzadeh, R., Ashrafizadeh, S. N., Saberyan, K., and Ghanadi, M. (2008) “Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction”. Hydrometallurgy, 90: 115–120.
[28] Mondal, S., Paul, B., Kumar, V., Singh, D. K., and Chakravartty, J. K. (2015). “Parametric optimization for leaching of cobalt from Sukinda ore of lateritic origin – A Taguchi approach”. Separation and Purification Technology, 156: 827–834.
[29] Safarzadeh, M. S., Moradkhani, D., Ojaghi Ilkhchi, M., and Hamedani Golshan, N. (2008). “Determination of the optimum conditions for the leaching of Cd–Ni residues from electrolytic zinc plant using statistical design of experiments”. Separation and Purification Technology, 58: 367–376.
[30] Habashi, F. (1978). “Chalcopyrite”. McGraw-Hill, New York, 16-29.
[31] Biswas, A. K. (1991). “Frontiers in applied chemistry (2nd edition.)”. Narosa Publishing House, New Delhi, 39.
[32] Gosh, A., and Ray, H. S. (1991). “Principle of Extractive Metallurgy (2nd edition)”. Wiley Eastern Ltd. New Delhi, 270.
[33] Zarei, H., Safari, M., Abdi, M., and Heydari. M. (2015). “The effects of present ions in lead sulfate halide leaching from zinc leaching plant residual cake’. Proceedings of Pb-Zn, Düsseldorf, Germany, 2: 667-686.