تحلیل قابلیت دسترسی ماشین آلات معدنی درمعدن مس سونگون

نویسندگان

1 دانشجوی دکتری مهندسی استخراج معدن دانشگاه صنعتی شاهرود

2 عضو هیئت علمی گروه معدن دانشگاه صنعتی شاهرود

3 کارشناسی ارشد استخراج معدن، دانشگاه شاهرود

چکیده

قابلیت دسترسی به سبب پیچیدگی سیستم‌های نوین امروزی، هزینه‌های عملیاتی و تضمین عملکرد صحیح محصول (خدمات)، به عنوان یک چالش در قرن 21 به‌ شمار  می‌رود. در گذشته این شاخص تنها دغدغه صنایع حساس و پیچیده مانند صنایع نظامی، هسته‌ای و هوا ‌فضا بود، در‌حالی‌که امروزه این مساله به یک نگرانی عمومی و فراگیر در اکثر صنایع به ویژه صنعت معدنکاری با تجهیزات غول‌آسا تبدیل شده است. قابلیت دسترسی به ‌لحاظ ریاضی زمان سرپایی و زمان‌ افت را دربرمی‌گیرد که این دو پارامتر در قالب دو شاخص قابلیت اطمینان و تعمیرپذیری مطرح­اند. در این مقاله پس از معرفی مفهوم قابلیت دسترسی، انواع قابلیت دسترسی، پارامترهای تشکیل دهنده‌ آن و ایده‌ اهمیت قابلیت دسترسی مورد بحث قرار گرفته است. در آخرین بخش از مقاله نیز سیستم معدنی شامل زیرسیستم‌های لودر WA470-3، بلدوزر کوماتسو D155A و دامپتراک کوماتسو HD785-5 از معدن مس سونگون در یک بازه‌ 15 ماهه تحلیل شده است. با استفاده از تحلیل‌های آماری تابع یا مدل مناسبی بر داده‌های خرابی (زمان‌ بین خرابی‌ها) و تعمیرات (زمان تا انجام تعمیر) زیرسیستم‌ها برازش شده، سپس مقدار قابلیت دسترسی زیرسیستم و سیستم محاسبه و در آخرین مرحله نیز از ایده‌ اهمیت قابلیت دسترسی برای اولویت‌بندی زیرسیستم‌ها در ساختار سیستم کلی استفاده شده است. مقدار شاخص اهمیت قابلیت دسترسی نشان داد که زیرسیستم لودر به‌ شدت نیازمند ارتقا و بهبود وضعیت عملکردی است و بهبود قابلیت تعمیرپذیری نسبت به قابلیت اطمینان اولویت بیشتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Availability analysis of mining machinery in Sungun copper mine

نویسندگان [English]

  • A. Nouri Gharahasanlou 1
  • R. Khalokakaie 2
  • M. Ataei 2
  • S. Fatorachi 3
1 Faculty of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
2 Professor, Faculty of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
3 M.Sc. of Mining Engineering, Faculty of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Availability, due to the complexity of modern systems, operation costs, and guaranteed functioning of the product, is considered as a challenge; it is also regardeded as one of the most characteristic aspects of quality in the 21st century. While availability in the past was a concern in sensitive and complex industries such as military, nuclear, and aerospace industries, today this issue has become a universal concern in most industries, especially the mining industry with gigantic equipment. In mathematical terms, availability includes up time and down time. These two parameters are presented in the form of two indicators of reliability and maintainability. In this study, after introducing the concept of availability, its variants, its constituent parts and the importance of availability  are discussed. Finally, a mining system constituting of a WA470-3 loader, D155A bulldozer, and HD785-5 dump truck is considered from Sungun copper mine () in Iran, and analyzed for a period of 15 months. The failure data (time between failures) and repairs data (time to repair) were analysed, and the fitted best function or model as well as subsystems and subsystem availability were calculated using statistical analysis. In last step, availability importance measure concept for subsystem prioritizing in mining system configuration was used. Availability importance measure indicated that the performance of loader must be immediately improved. In addition, results showed that improving maintainability has priority over reliability.

کلیدواژه‌ها [English]

  • reliability
  • maintainability
  • availability
  • Availability importance measure
  • Mine
[1]     Kumar U., and Huang, Y. (1993).“Reliability analysis of a mine production system-a case study”. In Reliability and Maintainability Symposium, Proceedings, Annual, 167 –172.
[2]     Vagenas, N., Runciman, N., and Clément, S. R. (1997). “A methodology for maintenance analysis of mining equipment”.International Journal of Surface Mining, Reclamation and Environment, 11(1): 33–40.
[3]     Hall, R. A., and Daneshmend, L. K. (2003). “Reliability Modelling of Surface Mining Equipment: Data Gathering and Analysis Methodologies”. International Journal of Surface Mining, Reclamation and Environment, 17(3): 139–155.
[4]     Hall, R. A., and Daneshmend, L. K. (2003). “Reliability and maintainability models for mobile underground haulage equipment”. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) bulletin, 96(1072): 159–165.
[5]     Samanta, B., Sarkar, B., and Mukherjee, S. (2004). “Reliability modelling and performance analyses of an LHD system in mining”. South African Institute Mining and Metallurgy, 104: 1–8.
[6]     Barabady, K., and Uday, J. (2005). “maintenance schedule by using reliability analysis: a case study at jajram bauxite mine of iran”. presented at the 20th World Mining Congress, Tehran, Iran, 2: 831–838.
[7]     Barabady, J. (2005). “Reliability and maintainability analysis of crushing plants in Jajarm Bauxite Mine of Iran”. presented at the Reliability and Maintainability Symposium, Proceedings, Annual, 109–115.
[8]     Barabady, J., and Kumar, U. (2008). “Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran”. Reliability Engineering & System Safety, 93(4): 647–653.
[9]     Vayenas, N., and Wu, X. (2009). “Maintenance and reliability analysis of a fleet of load-haul-dump vehicles in an underground hard rock mine”. International Journal of Mining, Reclamation and Environment, 23(3): 227–238.
[10]  Barabadi, A., Barabady, J., and Markeset, T. (2011). “A methodology for throughput capacity analysis of a production facility considering environment condition”. Reliability Engineering & System Safety, 96(12): 1637–1646.
[11]  Stapelberg, R. F. (2008). "Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design". Springer Science & Business Media.
[12]  International Electrotechnical Commission (1941). International electrotechnical vocabulary. International Electrotechnical Commission. See also URL http://www. electropedia.org/iev/iev.nsf/display? openform&ievref=191-02-05
[13]  Kumar, U., and Akersten, P. A. (2008). “Availability and Maintainability”. Encyclopedia of Quantitative Risk Analysis and Assessment.
[14]  Raheja DG., Allocco M., (2006). Assurance Technologies Principles and Practices: A Product, Process, and System Safety Perspective. John Wiley & Sons
[15]  International Electrotechnical Commission (1990). IEC 60050-191 International Electrotechnical Vocabulary, Chapter 191: Dependability and Quality of Service. International Electrotechnical Commission. See also URL http://www.electropedia. org /iev/iev.nsf/display?openform&ievref=191-02-06.
[16]  Diallo, C., Aıt-Kadi, D., and Chelbi, A. (2012). An Integrated Approach for Spare Parts Provisioning. Frontiers in Science and Engineering, an International Journal Edited by Hassan II Academy of Science and Technology 2.
[17]  Ahmadi, A. (2010). “Aircraft Scheduled Maintenance Programme Development Decision Support Methodologies and Tools”. Phd Thesis, Luleå University of Technology, Luleå, Sweden.
[18]  Ahmadi A, Karim R, Barabady J., (2010). “Prerequisites for a business-oriented fleet availability assurance program in aviation”. The 1st international workshop and congress oneMaintenance Luleå tekniska universitet, pp 168–175.
[19]  Barabadi, A., Barabady, J., and Markeset, T. (2011). “Maintainability analysis considering time-dependent and time-independent covariates”. Reliability Engineering & System Safety, 96(1): 210–217.
[20]  Barabady, J., and Kumar, U. (2007). “Availability allocation through importance measures”. International journal of quality & reliability management, 24(6): 643–657.
[21]  Nouri Gharahasanlou, A., Ataei, M., Khalokakaie, R., and Barabadi, A. (2016). Normalised availability importance measures for complex systems. International Journal of Mining, Reclamation and Environment, 1–14.
[22]  Siegfried, R. (2014). “Modeling and Simulation of Complex Systems. Springer Fachmedien Wiesbaden. doi: 10.1007/978-3-658-07529-3
[23]  Kumar, U., and Klefsjö, B. (1992). “Reliability analysis of hydraulic systems of LHD machines using the power law process model”. Reliability Engineering & System Safety, 35(3): 217–224.
[24]  Reliability Software, Training, Consulting and Related Reliability Engineering Analysis Services, (2015). ReliaSoft Corporation. URL http://www.reliasoft.com
[25]  Beeson, S., and Andrews, J. D. (2003). “Importance measures for noncoherent-system analysis”. IEEE Transactions on Reliability, 52(3): 301 – 310.