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Abstract: Mineral exploration necessitates a comprehensive approach that involves analyzing various geophysical, 
geological, and geochemical datasets, in addition to employing efficient and effective methodologies. Successfully 
addressing this challenge involves integrating and analyzing diverse geographic data, which often come in different 
formats and possess distinct features, with the aid of innovative applications. One promising technique involves 
utilizing artificial intelligence to convert low-resolution drone-collected data into high-resolution ground data. For 
this particular investigation, three supervised regression models—linear regression, random forest, and enhanced 
gradient—were implemented in the Python programming environment using magnetometric data obtained from both 
UAV and Proton ground devices. After evaluating the statistical results, including metrics such as mean square error 
and mean absolute error, it was determined that the enhanced gradient model outperformed the others. This model 
exhibited respective values of 0.0004 and 0.01 for training data, 0.001 and 0.02 for experimental data, and 0.001 and 
0.01 for validation data. Additionally, the enhanced gradient model demonstrated stability, leading to its selection as 
the preferred model for prediction purposes.
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INTRODUCTION
Exploration of mineral reserves at ground level poses a significant challenge as direct evidence is often 

lacking. The identification of these reserves and mineralizations is crucial, given the diverse properties of 
mineral resources and the complex geological conditions in which they are found [1]. Several techniques 
have been developed to address this challenge, including geology, geochemical exploration, geophysical 
exploration, and remote sensing [2]. Among these techniques, magnetic data plays a prominent role in 
geophysics. Magnetic data can be collected using both ground-based methods, which offer high resolution 
but are costly, and aerial methods, which provide lower resolution but are more cost-effective. Among the 
aerial methods, drones have emerged as a preferred choice due to their ability to operate at lower altitudes, 
resulting in improved accuracy. To achieve optimal results in magnetic exploration while minimizing time 
and costs, there is a need for an optimal method that bridges the gap between these approaches. In this 
context, the use of artificial intelligence and a diverse range of algorithms can offer a promising solution, 
enabling the utilization of magnetic data in a more efficient and accurate manner. Artificial neural networks 
(ANNs) present an advantage over traditional experimental and statistical methods, as they do not require 
prior knowledge about the underlying relationship between the data [3]. This makes ANNs particularly 
well-suited for modelling complex and often nonlinear data, which exhibit significant variability due to 
their inherent nature. By leveraging the power of ANNs, it becomes possible to develop a new method that 
can effectively analyze magnetic data, reduce processing time, and provide data with minimal errors.

In 2017, Stephen Cohn et al. conducted a study on Australian Eastern gold mines, where they successfully 
utilized random forests applied to geophysical data (magnetic and radiometric) and remote sensing to map 
lithological features. This study demonstrated the effectiveness of random forest in classifying magnetic 
data [4]. In 2019, Jinfeng Lee et al. focused on air electromagnetic studies and employed four deep 
convolutional neural networks to analyze the collected parameters. Through the application of artificial and 
aerial data, this algorithm not only generated accurate depth images but also exhibited robustness to noise 
[5]. In 2020, John Stephen Kayude and Yusri Yusup utilized a combined Python and Matlab framework in 
a study conducted in Nigeria. They applied artificial intelligence and data mining techniques to determine, 
identify, and map the subsurface structure and desired properties of target minerals in the study area [6]. 
These examples highlight the successful utilization of artificial neural networks in analyzing earth science 
data. However, previous studies have primarily focused on processing and interpreting the resulting data, 
emphasizing the need for improved accuracy and cost-effectiveness in the earlier stages.

 The objective of this study is to develop a suitable method that leverages artificial intelligence to 
combine the advantages of both ground and aerial methods. The aim is to achieve high accuracy while 
minimizing the time, costs, life risks, and coverage limitations associated with traditional approaches. The 
proposed method should optimize the point-to-point equivalence of the two methods—air and ground—and 
streamline the necessary processes. The data obtained through this approach can then be further analyzed 
and interpreted, ensuring more reliable and expedited results compared to existing methods.

METHODS
The objective of the algorithm in this study is to establish the relationship between the input and output 

data through the artificial intelligence network. By training the network on the available input-output pairs, 
it can learn the underlying patterns and associations in the data. Once the relationship is discovered, the 
trained network can be used to predict the output for new input data. Given the nature of the problem, it is 
necessary to select algorithms that are capable of performing prediction or regression tasks. Since both the 
input and output values are specified, the algorithm selection should focus on regression algorithms that can 
accurately estimate the relationship between the variables.

In this study, three regression algorithms were employed: linear regression, random forest, and gradient 
boosting. These algorithms were evaluated based on their statistical performance across the training, testing, 
and validation datasets. The algorithm that demonstrated the best statistical results in terms of accuracy and 
error metrics across these sections would be considered the superior algorithm for predicting the desired 
values.

FINDINGS AND ARGUMENT
After collecting and correcting the data obtained from both the UAV and the proton, the magnetic field 
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intensity maps were generated using Geosoft software (Figures 1A and 1B). The initial dataset consisted of 
442 points from the proton and 31,382 points from the UAV. To ensure data quality, points within a three-
meter range were filtered out, resulting in 129 remaining points (Figure 1C). The longitude, latitude, and 
air magnetic field intensity were considered as the input data, while the ground magnetism served as the 
target or output data.

To train and evaluate the network, approximately 10% of the data (13 points) were randomly set aside as 
validation data, while the remaining 116 points were split into 80% training data and 20% testing data. The 
three models (linear regression, random forest, and gradient boosting) were assessed for their performance. 
Although all models performed well, linear regression showed weaker performance compared to the other 
two models. Random forest and gradient boosting demonstrated better results, with gradient boosting 
being selected as the superior algorithm (Table 1). The stability of the gradient boosting network was also 
evaluated by analyzing the error range and standard deviation, which indicated that the network was stable 
(Table 2).

     

Model  Mean absolute 
error 

Mean squared 
error 

Median 
absolute error 

Explain 
variance score R2 score Root mean 

squared error 

Random 
Forest 

Train 0.009915782 0.000548293 0.002260187 0.965535858 0.965266866 0.023415661 
Test 0.026276936 0.001992696 0.014750688 0.845481272 0.840042657 0.044639627 

Validation 0.030589285 0.003562773 0.004164696 0.777435639 0.742619828 0.059688967 

Liner 
Regression 

Train 0.02549339 0.002157063 0.012479316 0.863354905 0.863354905 0.046444196 
Test 0.035233822 0.003296804 0.019957522 0.738483457 0.735359586 0.0574178 

Validation 0.035782305 0.003635427 0.015244726 0.746539572 0.737371167 0.060294504 

Gradient 
Boosting 

Train 0.012999734 0.000406561 0.007611715 0.974245252 0.974245252 0.020163368 
Test 0.025387113 0.001233268 0.015777321 0.901472653 0.901003333 0.035117917 

Validation 0.019955882 0.001226281 0.009685084 0.932825116 0.911411546 0.035018302 

 
 

 Minimum Maximum Average Standard deviation 
Train 0.009605411 0.023519841 0.018394747 0.002349633 
Test 0.014355825 0.178974683 0.048994088 0.032010111 

Validation 0.017289743 0.138338533 0.04521458 0.029094517 

Table 1. The results of the statistical components of the three models implemented in three stages of training, testing, 
and validation

Table 2. Statistical results of the Gradian Graduate Network Stability Test

Figure 1. A: map of intensity of the magnetic field of earth’s harvest data, B: aerial with harvest profile and C: 
map of ground and air adaptation points and the intensity of the magnetic field resulting from these points

(A) (B) (C)



In the final step, the complete set of aerial data (31,382 points) was input into the gradient boosting 
network for prediction, resulting in the generation of predicted output data. These predicted data were 
then transformed into a magnetic intensity map using Geosoft software and compared with the magnetic 
intensity map obtained from the proton. The comparison revealed a high degree of agreement in terms of 
the location, intensity, and shape of the magnetic anomalies in both maps (Figure 2).

CONCLUSIONS
In the current era, the rising costs and challenges associated with discovering new mineral resources 

have necessitated the development of improved approaches to mineral exploration. Artificial intelligence 
has emerged as a promising solution for solving problems that lack specific mathematical relationships and 
where causation is not clearly defined. In this study, magnetic data collected by a drone-connected sensor 
were processed using Python programming to convert the data into ground data. The resulting magnetic 
intensity map was then compared to the map obtained from ground data collected by a proton magnetometer 
in Geosoft software. To ensure data quality, a filtering process was applied to the aerial and ground data, 
removing points that were less than 3 meters apart. This filtering reduced the dataset to 129 data points. 
A validation dataset comprising 10% of the total data was randomly selected, while the remaining data 
was split into 80% for training and 20% for testing. Three models—linear regression, random forest, and 
gradient boosting—were evaluated for their performance in converting the aerial data to ground data. 
Among these models, gradient boosting demonstrated superior statistical criteria compared to the other two 
models and was therefore chosen as the optimal model for projecting and forecasting the aerial data. The 
gradient boosting model exhibited an average squared error of 0.0004 and an average absolute error of 0.01 
in the training data. In the testing data, the corresponding values were 0.01 and 0.02, respectively. For the 
validation data, the model achieved an average squared error of 0.01 and an average absolute error of 0.01. 
Stability tests confirmed the reliability of the gradient boosting model, as indicated by low fluctuations 
in root mean square error (RMSE) values and a low standard deviation across the training, testing, and 
validation data. Finally, the complete set of aerial data was converted to ground data using the gradient 
boosting model. The resulting ground data was compared to the proton data as a magnetic intensity map, 
demonstrating the accuracy and efficacy of the selected regression approach. Both maps exhibited high 
similarity, affirming the accuracy of the conversion process.
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Figure 2. A: map of intensity of magnetic field of earth harvest data with harvest profile and B: magnetic square 
intensity map of development of gradient boosting network with harvest profile
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