بررسی تاثیر الگوی ساختاری منطقه شمال شرق ایران بر مدل کانی زایی آهن در آنومالی C شمالی سنگ آهن سنگان

نویسندگان

1 دانشجوی دکتری، گروه مهندسی معدن، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران

2 دانشیار، گروه مهندسی معدن، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران

3 استادیار، سازمان زمین‌شناسی و اکتشافات معدنی ایران

چکیده

سیستم‌های ساختاری مرتبط با کانی‌سازی آهن در محدوده ذخایر معدنی سنگان واقع در شمال‌شرق ایران، رابطه مستقیمی با هندسه تغییر شکل‌ها، شکستگی‌ها و گسل‌ها، سایر ساخت‌های صفحه‌ای و خطی و نفوذ توده‌های آذرین به عنوان منشا و منبع حرکت سیالات نهایی ماگماتیسم موثر در کانی‌سازی دارد. هدف از این مطالعه، بررسی و شناسایی ساختارهای تکتونیکی در ذخیره C شمالی سنگان و تحلیل آن‌ها، تعیین مدل ساختار ناحیه‌ای، مدل الگوی ساختاری ذخیره و در نهایت ارایه مدل تشکیل آن ذخیره است. با توجه به قرارگیری منطقه معدنی سنگان در انتهای یکی از پایانه‌های انشعابی بزرگ مقیاس از گسل درونه، این بلوک از لحاظ زمین‌ساخت    ناحیه‌ای، به عنوان بخشی از فرار تکتونیکی مطرح است و می‌توان بسیاری از عملکردهای ساختاری در ناحیه معدنی سنگان را ناشی از فعالیت این پدیده دانست. با بررسی گسل‌های موجود در محدوده ذخیره و انجام تحلیل تراکم فضایی هر سری گسل، نقشه چگالی گسل تهیه شده که نشانگر سه سیستم گسلی در ذخیره C شمالی است. بر اساس مطالعات توده‌های نفوذی، مدل شماتیک که نشان‌دهنده نوع تحرک احتمالی، مکانیزم ساختمان بیرونی و خروج سیالات ماگمایی در هنگام جانشینی ماگما است، به همراه مدل تشکیل ذخیره C شمالی ارایه شد. تشکیل ذخیره C شمالی مرتبط با ساختار است که پایه‌ای برای کاربرد روش تکتونوژئوشیمیایی است. نتایج مطالعه اسکارن‌ها و توده معدنی در ذخایر سنگان (به ویژه C شمالی)، اهمیت زیادی دارد و می‌تواند به صورت محلی برای مطالعه ذخایر اسکارن دیگر که در کنتاکت سنگ‌های کربناته با نفوذی‌های گرانیتی در این نوار معدنی‌اند، مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Effect of Structural Pattern on Mineralization Model in the C- North Ore Deposit, Sangan, NE Iran

نویسندگان [English]

  • A. Rezaei 1
  • H. Hassani 2
  • P. Moarefvand 2
  • A. Golmohammadi 3
1 Ph.D Student, Dept. of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran
2 Associate Professor, Dept. of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran
3 Assistant Professor, Geological Survey and Mineral Exploration of Iran, Tehran, Iran
چکیده [English]

Structural systems related to iron ore mineralization in the Sangan mining region, northeastern Iran, have a direct relationship with the geometry of deformations. Fractures and faults, linear and planar structures and the influence of igneous bodies as the source of the fluids have the final effect of magmatism on mineralization. The purpose of this study was to investigate and identify the tectonic structures in C-North ore deposit, including a regional structural model with a structural model of ore deposit, and deposit formation model. Due to the location of the Sangan mining area at the end of one of the large-scale branching terminals of the Dorouneh fault, Sangan region is considered as part of the tectonic escape, and many structural functions in the area can be found in the Sangan ore deposits is due to the activity of this phenomenon. By investigating the existing faults in the area and performing a spatial density analysis for each fault series, a fault density map is generated which indicates the three fault systems in the C-North ore deposit. Based on intrusive body studies, the schematic diagram showing the probable accretion style, mechanism of outward building and exsolution of magmatic fluids during the emplacement of magma was presented along with the C-North ore deposit formation model. The results of studying of skarns and C-North ore deposits have great applied scientific significance and can be used for the study of skarn deposits.

کلیدواژه‌ها [English]

  • Structural model
  • Mineralization
  • Tectonic escape
  • C-North deposit
  • Sangan

[1]     Groves, D. I., Bierlein, F. P., Meinert, L. D., and Hitzman, M. W. (2010). “Iron Oxide Copper Gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits”. Economic Geology, 105: 641–654.

[2]     Liang, H. Y., Sun, W., Su, W. C., and Zartman, R. E. (2009). “Porphyry copper–goldmineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration”. Economic Geology, 104: 587–596.

[3]     Klein, C. (2005). “Some Precambrian banded iron  formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins”. American Mineralogist, 90: 1473–1499.

[4]     Liu, L.,Wan, C., and Zhao, Y. (2011). “Geodynamic constraints on orebody localization in the Anqing orefield, China: computational modeling and facilitating predictive exploration of deep deposits”. Ore Geology Review, 43: 249–263.

[5]     Nadoll, P., Mauk, J. L., Hayes, T. S., Koenig, A. E., and Box, S. E. (2012). “Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States”. Economic Geology, 107: 1275–1292.

[6]     Meinert, L. D., Dipple, G. M., and Nicolescu, S. (2005). “World skarn deposits”. Economic Geology.

[7]     Ciobanu, C. L. and Cook, N. J. (2004). “Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania”. Ore Geology Reviews, 24: 315-370.

[8]     Chernicoff, C. J., Richards, J. P., and Zappettini, E. O. (2002). “Crustal lineament control on magmatism and mineralization in northwestern Argentina: Geological, geophysical, and remote sensing evidence”. Ore Geology Review, 21: 127–155.

[9]     Sillitoe, R. H. (2010).“Porphyry copper systems”. Economic Geology, 105: 3-41.

[10]  Mohebi, A., Mirnejad, H., Lentz, D., Behzadi, M., Dolati, A., Kani, A., and Taghizadeh, H.  (2015). “Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: an analysis of structural evolution from remote sensing, geophysical, geochemical and geological data”. Ore Geology Review, 69: 187–198.

[11]  Berger, B. R., Ayuso, R. A., Wynn, J. C., and Seal, R. R. (2008). “Preliminary Model of Porphyry Copper Deposits”. USGS (Open-File Report), pp. 1321.

[12]  Bierlein, F. P., Reynolds, N., Arne, D., Bargmann, C., McKeag, S., Bullen, W., Al-Athbah, H., McKnight, S., and Maas, R. (2016). “Petrogenesis of a Neoproterozoic magmatic arc hosting porphyry Cu-Au mineralization at Jebel Ohier in the Gebeit Terrane, NE Sudan”. Ore Geology Review, 79: 133–154.

[13]  Cooke, D. R., Hollings, P., and Walshe, J. L. (2005). “Giant porphyry deposits: Characteristics, distribution, and tectonic controls”. Economic Geology, 100: 801−818.

[14]  Belousov, V. I., Belousova, I. V., and Filippov, Y. А. (2012). “The formation of hydrothermal-magmatic systems of skarn type”. proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering  Stanford University, Stanford, California, January 30 - February 1, SGP-TR-194.

[15]  Sawkins, F. J. (1990). “Metal Deposits in Relation to Plate Tectonics”. second ed. Springer-Verlag, pp. 351.

[16]  Titley, S. R. (1982). “Advances in Geology of the Porphyry Cu Deposits”. University of Arizona Press, pp. 560.

[17]  Niemeyer, H., and Munizaga, R. (2008). “Structural control of the emplacement of the Portrerillos porphyry copper, central Andes of Chile”. J. S. Am. Earth Science, 26: 261–270.

[18]  Richards, J. P. (2003). “Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation”. Economic Geology, 96: 1515–1533.

[19]  Safari, H., Bagas, L., and Shafiei Bafti, B. (2015). “Structural controls on the localization of Cu deposits in the Kerman Cu metallogenic province of Iran using geoinformatic techniques”. Ore Geology Review, 67: 43–56.

[20]  Laznicka, P. (2010). “Giant Metallic Deposits Future Sources of Industrial Metals”. second ed. Springer-Verlag, Berlin, pp. 949.

[21]  Pirajno, F. (2009). “Hydrothermal Processes and Mineral Systems”. Springer Publication, pp. 1250.

[22]  Sibsone, R. H. (2001). “Seismogenic framework for hydrothermal transport and ore deposition”. Reviews in Economic Geology, 14: 25-50.

[23]  Cox, S. F., Knackstedt, M. A., and Braun, J. (2001). “Principles of structural control on permeability and fluid flow in hydrothermal systems”. Reviews in Economic Geology, 14: 1-24.

[24]  Sepidbar, F., Mirnejad, H., and Mi, C. (2018). “Mineral chemistry and Ti in zircon thermometry: Insights into magmatic evolution of the Sangan igneous rocks, NE Iran”. Journal of Chemie der Erde.

[25]  Karimpour, M. H. (2006). “Cu-Au mineralizaion accompany with magnetite- spcullarite (IOCG) and examples in Iran”. 9th Iranian geology society conference, University of Tarbiat Moallem, Tehran, Iran.

[26]  Golmohammadi, A., Karimpour, M. H., Malekzadeh Shafaroudi, A., and Mazaheri, S. A. (2014). “Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran”. Ore Geology Review, 65: 545–563.

[27]  Alizadeh, E., Ghadami, G., Esmaeily, D., Changqian, M., Lentz, D., Omrani, J., and Golmohammadi, A. (2017). “Origin of 1.8 Ga zircons in Post Eocene mafic dikes in the Roshtkhar area, NE Iran”. International Geology Review, 60(15): 1855-1882. DOI: 10.1080/00206814.2017.1396259.

[28]  Aghanabati, A. (2004). “Geology of Iran. Geological Survey of Iran”. Report No. 35, pp. 230.

[29]  Aghanabati, A. (1995). “Geology of Iran. Geological Survey of Iran”. Iran, pp. 606.

[30]  Muller R., and Walter R. (1983). “Geology of the Precamberian- Paleozoic Taknar inlier northwest of Kashmar, Khorasan province, NE Iran”. GSI. Rep, 51: 165-183.

[31]  Tapponnier, P., and Molnar, P. (1977). “Active faulting and tectonics in China”. Journal of Geophysical Research, 82: 2905-2930.

[32]  Javadi, H. R., Ghassemi, M. R., Shahpasandzadeh, Guest, B., EsterabiAshtiani, M., Yassaghi, A., and Kouhpeyam, M. (2013). “History of faulting on the Doruneh Fault System: implication for the kinematic changes of the Central Iranian Microplate”. Geological Magazine, 1-22.

[33]  Robert, J., and Jacobs, J. (2004). “Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic East African– Antarctic orogeny”. Geology, 32: 721-724.

[34]  Mann, P. (2007). “Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems”. The Geological Society of London, Spec. Publ., 290: 13–142.

[35]  Mazhari, N., Malekzadeh Shafaroudi, A., and Ghaderi, M. (2017). “Detecting and mapping different types of iron mineralization in Sangan mining region, NE Iran, using satellite image and airborne geophysical data”. Geosciences Journal, 21: 137-148.

[36]  Haji, E. (2009). “Structural and Fractal analysis of fractures systems of Taknar of central iran by use of remote sensing and field study data”. M.Sc. Thesis, Damghan University, Damghan, Iran, pp. 145.

[37]  Walker, R., Jackson, J., and Baker, C. (2004).“Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran”. Geophysical Journal International, 157: 265-282.

[38]  Almasi, A. (2015). “Mineralizaion, Petrogenesis and geochemical-geophysical exploration in Uch Palang- Sarsefidal area (Northeast of Kashmar)”. Ph.D. Thesis, University of Ferdowsi, Mashhad, Iran.

[39]  Forster, H. and Jafarzadeh, A. (1994). “The Bafq Mining District in Central Iran- a Highly Minerlized Infracambrian Volcanic Field”. Economic Geology, 89: 1697-1721.

[40]  Anderson, E. M. (1951). “The dynamic of faulting and dyke information with application to Britain”. Oliver and Boyd, Edinburg.

[41]  Davis, G. H., and Reynolds, S. (1996). “Structural Geology of Rocks and Regions”. Wiley.

[42]  Malekzadeh Shafaroudi, A., Karimpour, M. H., Golmohammadi, A. (2013). “Zircon U-Pb geochronology and petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran”. Journal of Asian Earth Sciences, 64: 256-271.