مطالعه تاثیر متقابل متغیرهای عملیاتی فلوتاسیون ستونی با ویژگی‌های تصاویر کف

نویسندگان

1 دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران

2 دانشجوی دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران

3 استادیار، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران

چکیده

ساختار سطح کف فلوتاسیون، حاوی اطلاعات مهمی از فرآیند است که به خوبی شرایط عملیاتی فرآیند را بازتاب می‌دهد. در این تحقیق تاثیر متغیرهای عملیاتی فلوتاسیون ستونی (نرخ جریان گاز، ارتفاع کف، درصد جامد پالپ، نرخ مواد شیمیایی و pH) بر ویژگی‌های استخراج شده از تصاویر کف (اندازه حباب، رنگ کف، سرعت و پایداری کف) در عملیات گوگردزدایی از کانه‌های آهن بررسی شد. برای انجام آزمایش‌ها از کنسانتره جداکننده‌های مغناطیسی خط فرآوری باطله های خشک مجتمع سنگ آهن گل گهر با عیار متوسط گوگرد و آهن 0/48 و 63 درصد نمونه‌برداری شد و به منظور جمع‌آوری ویژگی‌های تصاویر کف و متغیرهای فرآیند، 45 آزمایش‌ها بر اساس طراحی آزمایش مرکب مرکزی(CCD) انجام شد. مجموعه داده‌های تصویری کف با استخراج فریم‌های متوالی از دوربین عکاسی و فیلم‌برداری به دست آمد و میانگین ویژگی‌های استخراج شده از تصاویر کف انتخابی محاسبه شد. نتایج تحلیل واریانس داده‌ها نشان داد که متغیرهای عملیاتی فلوتاسیون ستونی تاثیر معناداری بر ویژگی‌های استخراج شده از تصاویر کف دارند. تاثیر pH و تاثیر متقابل pH- نرخ کلکتور بر همه ویژگی‌های کف اثر معناداری دارد. نتایج نشان داد که وضعیت فرآیند فلوتاسیون می‌تواند با دقت بالایی از ظاهر سطح کف تفسیر شود که رویکرد مناسبی را برای تعیین و بهینه‌سازی متغیرهای عملیاتی به عنوان تابعی از فرآیند کنترل، فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Correlation between column flotation froth image features in respect to operational variables

نویسندگان [English]

  • M. Irannajad 1
  • F. Nakhaei 2
  • S. Mohammadnejad 3
1 Associate Professor, Dept. of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran
2 Ph.D Student, Dept. of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran
3 Assistant Professor, Dept. of Mining Engineering, Tarbiat Modares University, Tehran
چکیده [English]

It is now generally accepted that froth appearance is a good indicative of the flotation operation conditions. Image analysis technology now offers a viable means of monitoring and control of the flotation process. In this paper, the relationship between the operational variables (i.e. gas flow rate, froth depth, slurry solids%, frother/collector dosage and pH) and the froth features (i.e. bubble size, froth velocity, froth colour and froth stability) in the column flotation was discussed during desulfurization of an iron ore using response surface methodology.Image analysis techniques have been developed and used successfully to characterize froth. Results of the CCD experiments showed that the flotation variables have different effects on the froth features. The effect of pH and the interaction of the effect of the pH and collector dosage have a significant impact on all mentioned froth features. The results show that the process state can be accurately deduced from the froth surface appearance, providing a convenient way to quantify changes in parameters as a function of the process control.

کلیدواژه‌ها [English]

  • Image analysis
  • Froth features
  • Operational variables
  • Column flotation
  • Iron ore
[1]     Nakhaei, F., Mosavi, M. R., Sam, A., and Vaghei, Y. (2012). “Recovery and grade accurate prediction of pilot plant flotation column concentrate: neural network and statistical techniques”. International Journal of Mineral Processing, 110–111: 140– 154.

[2]     Shean, B. J., and Cilliers, J. J. (2011). “A review of froth flotation control”. International Journal of Mineral Processing, 100(3-4): 57-71.

[3]     Bonifazi, G., Serranti, S., Volpe, F., and Zuco, R. (2001). “Characterization of flotation froth colour and structure by machine vision. Comput”. Geosciences, 27(9): 1111–1117.

[4]     Yang, C., Xu, C., Mu, X., and Zhou, K. (2009). “Bubble size estimation using interfacial morphological information for mineral flotation process monitoring”. Transactions of Nonferrous Metals Society of China, 19: 694–699.

[5]     Moolman, D. W., Eksteen, J. J., Aldrich, C., and Van Deventer, J. S. J. (1996). “The significance of flotation froth appearance for machine vision control”. International Journal of Mineral Processing, 48(3–4): 135–158.

[6]     Morar, S. H., Harris, M. C., Bradshaw, D. J. (2012). “The use of machine vision to predict flotation performance”. Minerals Engineering, 36–38: 31–36.

[7]     Moolman, D. M., Aldrich, C., and Van Deventer, J. S. J. (1995). “The interpretation of flotation froth surfaces by using digital image analysis and neural networks”. Chemical Engineering Science, 50: 3501–3513.

[8]     Holtham, P. N., and Nguyen, L. K. (2002). “On-line analysis of froth surface in coal and mineral flotation using JKFrothCam”. International Journal of Mineral Processing, 64: 163–180.

[9]     Kaartinen, J., Hatonen, J., Hyotyniemi, H., and Miettunen, J. (2006). “Machine vision based control of zinc flotation—a case study”. Control Engineering Practice, 14: 1455–1466.

[10]  ‌Vanegas, C., and Holtham, P. (2008). “On-line froth acoustic emission measurements in industrial sites”. Minerals Engineering, 21: 883–888.

[11]  Aldrich, C., Marais, C., Shean, B. J., and Cilliers, J. J. (2010). “Online monitoring and control of froth flotation systems with machine vision: a review”. International Journal of Mineral Processing, 96: 1–13.

[12]  Sadr-Kazemi, N., and Cilliers, J. J. (1997). “An image processing algorithm for measurement of flotation froth bubble size and shape distributions”. Minerals Engineering, 10(10): 1075–1083.

[13]  Oestreich, J. M., Tolley, W. K., and Rice, D. A. (1995). “Development of a color sensor system to measure mineral compositions”. Minerals Engineering, 8(1–2): 31–39.

[14]  Banford, A. W., Aktas, Z., and Woodburn, E. T. (1998). “Interpretation of the effect of froth structure on the performance of froth flotation using image analysis”. Powder Technology, 98(1): 61–73.

[15]  Lin, B., Recke, B., Knudsen, J. K. H., and Jorgensen, S. B. (2008). “Bubble size estimation for flotation processes”. Minerals Engineering, 21: 539–548.

[16]  Mehrshad, N., and Massinaei, M. (2011). “New image processing algorithm for measurement of bubble size distribution from flotation froth images”. Minerals & Metallurgical Processing Journal, 28(3): 146–150.