بررسی تاثیرات خردشدگی ناشی از عملیات انفجار بر روی کارآیی ماشین‌آلات در معدن مس سرچشمه

نویسندگان

1 کارشناسی ارشد، گروه مهندسی انفجار شهید چمران، تهران

2 استادیار مهندسی معدن، دانشگاه آزاد اسلامی واحد شاهرود

چکیده

خردشدگی بیشتر سنگ به وسیله انفجار باعث افزایش هزینه‌های عملیات حفاری و انفجار می‌شود، اما در مقابل، منجر به کاهش عملیات بارگیری و باربری و عدم نیاز به انفجار ثانویه می‌شود. به همین منظور پایگاه داده‌ای شامل رخدادهای واقعی خردایش ناشی از انفجار و پارامترهای موثر اصلی بر خردایش و عملکرد تولید مربوط به 20 بلوک انفجاری در معدن مس سرچشمه ایجاد شد. در این تحقیق، پارامترهای موثر در کارآیی ماشین‌آلات بخش استخراج معدن مس سرچشمه بررسی شد. به این منظور پارامتر نسبت طول به عرض بلوک انفجاری (RLW) و پارامترهای کارکرد (O1)، خرابی (F1)، آمادگی (R1) و جابه­ جایی دستگاه‌های بارگیری (M1) معرفی، اندازه‌گیری و مورد استفاده قرار گرفت. پارامتر نسبت طول به عرض بلوک انفجاری (RLW) در اکثر مدل‌های پیشنهادی وجود دارد که این پارامتر تاثیر بسزایی در کارآیی دستگاه بارگیری دارد. ضریب همبستگی بسیار بالای یک سیکل بارگیری جام دستگاه بارگیری (C1) با متغیرهای مستقل نشان می‌دهد که متغیر یک سیکل بارگیری جام دستگاه بارگیری (C1) بیشتر متاثر از خردشدگی ناشی از عملیات از انفجار و ابعاد بلوک انفجاری بوده است. بهترین و بدترین یک سیکل بارگیری جام دستگاه بارگیری (C1) دستگاه‌های معدن مس سرچشمه به ترتیب برابر با 14/38 و 51/15 ثانیه بوده است که در آن D50 به ترتیب 3/02 و 10/39 سانتی‌متر و D80 و ، 6/69 و 24/49 سانتی‌متر شده است. ضریب همبستگی 0/8 برای بارگیری ویژه (S1) در کل بلوک‌های انفجاری نشان دهنده تاثیرپذیری بسیار بالای بارگیری ویژه (S1) از خردشدگی ناشی از عملیات انفجار است. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the impacts of fragmentation due to blasting operation on machinary efficiency of Sarcheshmeh Copper Mine

نویسندگان [English]

  • A. Nikkhah 1
  • M. Taji 2
1 M.Sc, Dept. of Engineering Blasting Shahid Chamran, Tehran
2 Assistant Professor, Dept. of Mining Engineering, Shahrood Branch, Islamic Azad University, Shahrood
چکیده [English]

Producing more fragmented rock by blasting requires increased costs in drilling and blasting operations. On the other hand, it leads to a reduction of loading, haulage operation and no need for secondary blasting. In this study, the effective parameters in machinary efficiency of Sarcheshmeh Copper Mine was explored. For this purpose, the ratio parameter of length to width of the blast block (RLW) and the Loading parameters including Operation(O1), Failure(F1), Ready (R1), Movement of loading machine (M1), were introduced, measured and used. The blasing blocks' ratio of length to width (RLW) parameter is presented in most of the proposed models. This parameter has been effective in efficiency of loading machinary. The high correlation coefficient of a loading cycle of machine’s bucket (C1) with the independent variables shows that this variable is more affected by the fragmentaion and the dimensions of blasted blocks. The best and the worst of a loading cycle of machine’s bucket (C1) are equal to 14.38 and 51.15 seconds in Sarcheshmeh Copper minefor which (D50) corresponds to 3.02 and 10.39, cm respectively and (D80) equals to 6.69 and 24.49 cm, respectively. The Correlation coefficient of 0.8 for specific loading (S1) indicates the high influence of fragmentation caused by blasting operations on specific loading (S1).

کلیدواژه‌ها [English]

  • Blasting operations
  • Fragmentation
  • Machine’s efficiency
  • Sarcheshmeh Copper Mine

[1]     تاجی، م.؛ 1388؛ "توسعه مدل ارزیابی جهت بهینهسازی عملیات انفجار معدن  روباز"، رساله‌ی دکتری، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران.

[2]     Morin, M., and AFicarazzo, F. (200). “Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz – Ram model”. Computers & Geosciences, 32: 352–359.

[3]     Mackenzie, A. S. (1967). “Optimum Blasting. Twenty-Eighth Annual Mining Symposium”.  University of Minnesota, Minneapolis, 181–188.

[4]     da Gama, C. D. (1990). “Reduction of costs and environmental impacts in quarry rock blasting”. Proceedings of 3rd International Symposium on Rock Fragmentation by Blasting, Brisbane, 26–31 Aug, 5–8, Publ Parkville: AusIMM, May 1992, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 29( 3): A176.

[5]     da Gama,C.D., and Lopez Jimeno,C. (1993). “Rock fragmentation control for blasting cost minimization and environmental impact abatement”. Proceedings Of FRAGBLAST 4, Fragmentation by blasting, 273-280.

[6]     Nielsen, K., and Malvik, T. (1999). “Grindability enhancement by blast-induced microcracks”. Powder Technology, 105: 52–56.

[7]     Nielsen, K. (1987). “Model studies of loading capacity as a function of fragmentation from blasting”. Proceedings of 3rd Mini- Symposium on Explosives and Blasting Research, 71 – 80.

[8]     Nielsen, K. and Lownds, C. M. (1997).  “Enhancement of taconite crushing and grinding through primary blasting”. International Journal of Rock Mechanics and Mining Sciences, 34: 226.e1-226.e14.

[9]     Taqieddin, S. A. (1989) “Evaluation of the efficiency of a blasting operation designed for a dragline strip mining process”. Mining Science and Technology, 8: 59–64.

[10]  Stagg, M. S., Otterness, R. E., and Siskind, D. E. (1992). “Effects of blasting practices on fragmentation”. Proc 33rd US Symposium on Rock Mechanics, Santa Fe, 313–322.

[11]  Stagg, M., Rholl, S., Otterness, R., and Smith, N. (1990). “Influence of shot design parameters on fragmentation”. Proceedings FRAGBLAST _90, Confernce, Brisbane, 311–317.

[12]  Eloranta, J. W. (1993). “Practical Blast Evaluation at The Minntac Mine proceedings of the nineteenth conference of Explosives and Blasting Technique”. San Diego, California, International Society of Explosives Engineers, Cleveland, Ohio, 101-107.

[13]  Eloranta, J. W. (1994). “Stemming Selection for Large-Diameter Blast Holes”. Proceedings of the twentieth conference of Explosives and Blasting Technique, Austin, Texas, International Society of Explosives Engineers, Cleveland, Ohio, 255-272.

[14]  http://www. Mrel.com/. (2008). “drill to mill for mines”. Pdf, April, 23.

[15]  Eloranta, J. W. (1997). “The Efficiency of Blasting versus Crushing and Grinding”. Proceedings of the Twenty Third Annual Conference on Explosives and Blasting Technique, Las Vegas, Nevada, February, International Society of Explosive Engineers, 157-163.

[16]  Lopez, C. J., Lopez, E. J., and Carcedo, F. J. A. (1995). “Drilling and blasting of rocks”. A.A. Balkema,Roterdam, pp. 391.

[17]  Fuerstenau, M. C., Chi, G., and Bradt, R. C. (1995). “Optimization of Energy Utilization and Production Costs in Mining and Ore Preparation”.  XIX International Mineral Processing Congress, San Francisco, California. Oct, 161-164.

[18]  Cunningham, C. V. B. (2005). “The Kuz-Ram fragmentation model – 20 years on”. Proceedings of 3rd EFEE World conference on explosives and blasting, September, Brighton, U.K, 201-210.

[19]  Cunningham, C. V. B. (2004). “Electronic Detonators: Growing Success in Transforming Rock breaking”. Proceedings of the thirtieth conference of Explosives and Blasting Technique, Orlando, Florida.

[20]  Adler, J., Du Mouza, J., and Arnould, M. (1996). “Evaluation of blast fragmentation efficiency and its prediction by multivariate analysis procedures”. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33: 189–196.

[21]  Moody, L., Cunningham, C., and Lourens, H. (1996). “Measuring the effect of blasting fragmentation on hard rock quarrying operations”. Proceedings of FRAGBLAST5, Fragmentation by Blasting, Montreal, Quebec, Canada, 353-359.

[22]  Eloranta, J. W. (2001). “Improve Milling through Better Powder Distribution”. Proceedings of the twenty-seventh conference of Explosives and Blasting Technique, Orlando.

[23]  Eloranta, J. W. (2001). “Optimized Iron Ore Blast Designs for SAG/AG Mills”, Proceedings of the International Conference on Autogenous and Semiautogenous Grinding Technology held, Vancouver, B. C., Canada, 1: 262-270.

[24]  Kanchibotla, S. S., Valery W., and Morrell, S. (1999). “Modelling fines in blast fragmentation and its impact on crushing and grinding”. Proceedings Explo-99 Conf. Kalgoorlie.

[25]  Kanchibotla, S. S., Morell, S, Valery, W., and Loughlin, P. (1998). “Exploring the Effects of Blast Design on SAG Mill Throughput at KCGM”. Mine to Mill Conference, At Brisbane, Australia, Brisbane, Qld, 153-158.

[26]  http://www. calderworkman.com/. (2008). “optimum+ Costs+ Blasting, A literature review’’. Workman-Davies, C.L., 2001. An Analysis of Blasting Profitability and Productivity, Hunter Valley, NSW, Oct., 28-31, 23 April, 41-45.

[27]  Grundstrom, C., Kanchibotla, S. S., Jankovic, A., and Thornton, D. (2001). “Blast Fragmentation for Maximising the Sag Mill Throughput at Porgera Gold Mine”. Proceedings of the Twenty-Seventh Annual Conference on Explosives and Blasting Technique, Orlando, USA.

[28]  Hamdi, E, and du Mouza J. (2005). “A methodology for rock characterization and classification to improve blast results”. International Journal of Rock Mechanics and Mining Sciences, 42:177–194.

[29]  Mosher, J. B. (2005). “Comminution circuits for gold ore processing Developments”. Mineral Processing, 15: 253-277.

[30]  Kojovic, T. (2005). “Influence of aggregate stemming in blasting on the SAG mill performance”. Minerals Engineering, 18: 1398-1404.

[31]  Singh, S. P., and Narendrula, R. (2006). “Factors affecting the productivity of loaders in surface mines”. International Journal of Mining, Reclamation and Environment, 20: 20–32.

[32]  Bremer, D., Ethier, R., and Lilly, D. (2007). “Factors Driving Continuous Blasting Improvement at the Lafarge Ravena Plant”. International Society of Explosives Engineers – 33rd Annual Conference on Blasting Technique.

[33]  http://www.AOG.com. (2009).‘‘drill to mill for mines’’. pdf/dix12 k71/ Sep, 28.

[34]  Taji, M., Ataei, M., Goshtasbi, K., and Osanloo, M. (2012). “A New Approach for Open Pit Mine Blasting Evaluation”. Journal of Vibration and Control, 12: 1738-1752.

[35]  Beyglou Ali, H. (2012). “Improvement of blast-induced fragmentation and crusher efficiency by means of optimized drilling and blasting in Aitik”. Master’s thesis, Department of Civil, Environmental and Natural Resources Engineering, Sweden.

[36]  Segarra, P. (2013). “Experimental analysis of fragmentation, vibration and rock movement in open pit blasting”. PhD Thesis, OAI.

[37]  Strelec, S., Gazdek, M., and Mesec, J, (2014). “Blasting design for obtaining desired fragmentation’’. Portal znanstvenih jasopisa republic hrvatske, 79-96.

[38]  Kwangmin, K. (2014). “Blasting Design Using Fracture Toughness and Image Analysis of the Bench Face and Muckpile’’. Master’s Thesis, Mining and Minerals Engineering.

[39]  Gaunt, J., Symonds, D., McNamara, G., Adiyansyah, B., L Kennelly, L., Sellers, E. J., and Kanchibotla, S. S. (2015). “Optimization of Drill and Blast for Mill Throughput improvement at Ban Houayxai mine: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 307-314.

[40]  Hakami, A., Mansouri, H., Ebrahimi, M. A. F., Dehghan, M. R., and Faramarzi, F. (2015). “Study of the Effect Blast Pattern Design on Autogenous and Semi-autogenous Mill Throughput at Gole-e-Gohar Iron Ore Mine: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 315-319.

[41]  Hawke, S. J., and Dominguez, L. A. (2015). “A Simple Technique for Using Haigh Eneregy: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 321-326.

[42]  Rasa, D, La., Caron, K., Valery, W., Diaz, R., and Mamani, H. (2015). “Blast Fragmentaion Impacts on Downstream Processing at Goldfields Cerro Corona: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 333-341.

[43]  Marin, T, Melo, E., Seccatore, J., Cardu, M., Galvão, F., Rezende, A., Bettencourt, J., and De Tomi, G. (2015). “The Effect of Drilling and Blasting Performance on Fragmentation Quarry and Time for Loading, Secondry Breakge and Crushing: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 355-361.

[44]  Silva, A. C, Martins, P. A. A., Silva, E. M. S., Fonseca, A. L. S Ferrari, A. J. D., Cunha, E. B., Silva, V. M., Matthew, V. O., and Vilela, D. E. T. (2015). “Fragmentation Optimisation-Aadopting Mine-to-Mill for Reducing Costs and Increasing Productivity: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 363-368.

[45]  Singh, S. P., and Doorselaere, D. V. (2015). “The Relationship between Blasting Parameters and Muck Pile Configuration: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 369-374.

[46]  Esen, S., and Nagarajan, M. (2015). “Muck Pile Shaping for Draglines and Dozers at Surface: A case study’’. Proceedings Of FRAGBLAST 11, Fragmentation by blasting, 409-416.

[47]  مجتمع مس سرچشمه؛ 1393؛ "گزارش طرح توسعه معدن مس سرچشمه"، مهندسی معدن مس سرچشمه.

[48]  جهانی، م.؛ منصوری، ح.؛ ابراهیمی فرسنگی، م.؛ غیاثی، م.؛ پور زمانی، ا.؛ 1392؛ "مقایسه نتایج حاصل از نرمافزار آنالیز تصویری Split-DesktopوGoldSizeبرای تعیین دانهبندی جبههکار خردشده"، اولین کنفرانس بین‌اللملی مهندسی معدن، فرآوری مواد معدنی، متالوروژی و محیط زیست، دانشگاه زنجان.

[49]  میرزاده، م.؛ 1388؛ "تجزیه و تحلیل آماری با نرمافزار SPSS"، ناشر تایماز، 398 صفحه.