توسعه نرم افزاری برای تحلیل تنش های ناشی از پایه های معدنی با شکل هندسی دلخواه بر اساس روش نمودار تاثیر تنش نیومارک

نویسندگان

1 استادیار گروه مهندسی معدن، دانشگاه صنعتی همدان

2 استادیار دانشکده مهندسی معدن، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

بارگذاری پی در حوزه مهندسی معدن عمدتا در پایه‌های معادن زیرزمینی اتفاق می‌افتد که در بسیاری موارد شکل هندسی نامنظمی دارند. مطالعات پیشین در مورد پایه‌های معدنی عمدتا بر توزیع تنش‌ها در داخل خود پایه متمرکز بوده‌اند، نه تنش‌های القایی ناشی از آن در لایه‌های زیرین. به عبارت دیگر، به یک پایه معدنی بیشتر به عنوان یک ستون توجه شده است، تا به عنوان یک پی. محاسبه تنش‌های ناشی از پی در سنگ یا خاک یکی از تحلیل‌های مهم در طراحی ایمن انواع سازه‌ها است. از‌ این‌رو، روش‌های متعددی برای تخمین این تنش‌های القایی در زمین ارایه شده است. یکی از این روش‌ها استفاده از نمودار تاثیر است، که علیرغم داشتن بنیان تئوری و قابلیت تحلیل پی‌ها با شکل هندسی دلخواه، به علت دشواری‌هایی که در ترسیم و محاسبه دارد کمتر به عنوان یک روش کارآمد در طراحی مورد توجه قرار می‌گیرد. در این مقاله به معرفی و ارزیابی نرم‌افزاری پرداخته می‌شود که بر مبنای نمودار تاثیر در ترکیب با تکنیک‌های پردازش تصویر، تعیین توزیع این تنش‌های القایی ناشی از پایه‌های معدنی را میسر می‌سازد. نرم‌افزار دارای رابط کاربری گرافیکی است و ایجاد یا ویرایش هندسه پایه در آن به آسانی انجام می‌شود. این برنامه قادر است مقدار فشار در هر نقطه دلخواه در عمق زمین و در هر مقطع دلخواه را بدست دهد. سرعت تحلیل تنش‌ها با استفاده از نرم‌افزار توسعه‌ داده ‌شده در مقایسه با کدهای عددی پیشرفته به مراتب بیشتر است، در حالی که نتایج اختلاف قابل ملاحظه‌ای ندارند. بنابراین استفاده از آن در مطالعات اولیه می‌تواند بسیار کارآمد باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Development of software for analyzing stresses induced by mine pillars of arbitrary shape based on Newmark’s influence chart

نویسندگان [English]

  • N. Babanouri 1
  • A. Kargar 2
1 Assistant Professor, Dept. of Mining Engineering, Hamedan University of Technology
2 Assistant Professor, School of Mining Engineering, College of Engineering, University of Tehran
چکیده [English]

Foundation loading in mines typically occurs on pillars in underground mines which may not have necessarily a regular shape. The previous studied have mostly focused on the stress distribution within the pillar, rather than on the stresses induced in the underlying layers. In other words, a mining pillar has been mainly regarded as a column rather than a footing. The determination of foundation-induced stresses in rock and soil is of great importance when designing mine pillars. Hence, different methods have been presented to analyze the stresses induced in the ground due to the foundation loading. The influence chart is a graphical analysis method based on the elasticity theory which is capable of analyzing foundations with arbitrary shape. However, since this method suffers from difficulties associated with drawing and calculation, it has not been considered as an efficient method of foundation analysis. In this paper, a computer program is introduced and evaluated which determines the mining pillar-induced pressure using the influence chart method combined with image processing techniques. The software presents a graphical user interface which facilitates creating and editing of the foundation geometry. The developed program is capable of estimating the over-pressure value at given coordinates below the foundation. The modeling procedure in the developed software is much faster compared to other sophisticated numerical codes, while no discrepancy in results is observed. Hence, it would be considered as an efficient and handy numerical tool in preliminary studies.

کلیدواژه‌ها [English]

  • Mining pillar
  • Induced pressure
  • Influence chart
  • Image processing
  • Finite element method
[1]     Wikipedia contributors. (2016). “List of structural failures and collapses”. Wikipedia, Free Encycl n.d. https://en.wikipedia.org/w/index.php?title=List_of_structural_failures_and_collapses&oldid=744211974.

[2]     Srivastava, A., Goyal, C. R., and Jain A. (2012). “Review of Causes of foundation failures and their possible preventive and remedial measures”. 4th KKU International Engineering Conference, Thailand.

[3]     Choi, D. S., and McCain, D. L. (1980). “Design of longwall systems”. Transactions of the Metallurgical Society of AIME, 268: 1761–1764.

[4]     Hsiung, S. M., and Peng, S. S. (1985). “Chain pillar design for US longwall panels”. Mining Science and Technology, 2: 279–305.

[5]     Hustrulid, W. A., and Bullock, R. C. (2001). “Underground mining methods: Engineering fundamentals and international case studies”. Society for Mining, Metallurgy & Exploration (SME), pp. 728.

[6]     Badr, S. (2004). “Numerical analysis of coal yield pillars at deep longwall mines”. Doctoral dissertation, Colorado School of Mines, USA, pp. 176.

[7]    نجفی، م.؛ جلالی، م. ا.؛ سرشکی، ف.؛ یاراحمدی بافقی، ع.؛ 1389؛"برآورد چگونگی توزیع بار در پایه‌های زنجیری کارگاه‌های استخراج جبهه کار بلند مکانیزه در معدن زغالسنگ طبس با استفاده از روش عددی". نشریه علمی-پژوهشی مهندسی معدن، دوره 5، شماره 9، ص 58-47.

[8]   جلالی، م. ا.؛ نجفی، م.؛ 1391؛"طراحی ابعاد بهینه پایه در معدن کرومیت فاریاب با توجه به ترتیب مراحل استخراج". نشریه علمی-پژوهشی مهندسی معدن، دوره 7، شماره 15، ص 47-35.

[9]     Boussinesq, J. (1883). “Application des potentiels à l’étude de l'équilibre et du mouvement des solides élastiques”. Paris: Gauthier-Villars.

[10] Westergaard, H. M. (1938). “A problem of elasticity suggested by a problem in soil mechanics: soft material reinforced by numerous strong horizontal sheets”. Contributions to the Mechanics of Solids, Stephen Timoshenko, 60th Anniversary Volume MacMillan, New York, 260–277.

[11] Newmark, N. M. (1942). “Influence charts for computation of stresses in elastic foundations”. University of Illinois. Engineering Experiment Station Bulletin, 48(338): 25.

[12] Fadum, R. E. (1948). “Influence values for estimating stresses in elastic foundations”. Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, 77–84.

[13] Ahlvin, R. G., and Ulery, H. H. (1962). “Tabulated values for determining the complete pattern of stresses, strains, and deflections beneath a uniform circular load on a homogeneous half space”. Highway Research Board Bulletin, 342: 261.

[14] Burmister, D. M. (1945). “The general theory of stresses and displacements in layered systems. I”. Journal of Applied Physics, 16: 89–94.

[15] Fox, L. (1948). “Computation of traffic stresses in a simple road structure”. HM Stationery Office, pp. 28.

[16] Wang, C. D., Pan, E., Tzeng, C. S., Han, F., and Liao, J. J. (2006). “Displacements and stresses due to a uniform vertical circular load in an inhomogeneous cross-anisotropic half-space”. International Journal of Geomechanics, 6: 1–10.

[17] D’Urso, M. G., and Marmo, F. (2009). “Vertical stresses due to linearly distributed pressures over polygonal domains”. Proceedings of ComGeo I, First International Symposium on Computational Geomechanics, 283–290.

[18] Morgan, J. R., and Scala, A. J. (1968). “Flexible pavement behaviour and application of elastic theory-a review”. 4th Australian Road Research Board (ARRB) Conference, Melbourne, 4(2).

[19] Bozozuk, M. (1978). “Bridge abutments move”. Research Record 678, Transportation Research Board.

[20] Yaghmaie, R., and Asgari, H. (2017). “The Elastodynamic Interaction of a Rigid Circular Foundation Embedded in a Functionally Graded Transversely Isotropic Half-Space”. Geo-China Conference, 57–64.

[21] Ai, Z. Y., Li, Z. X., and Cang, N. R. (2014). “Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space”. Soil Dynamics and Earthquake Engineering, 60: 22–30.

[22] Cheshmehkani, S., and Eskandari-Ghadi, M. (2016). “Dynamic response of axisymmetric transversely isotropic viscoelastic continuously nonhomogeneous half-space”. Soil Dynamics and Earthquake Engineering, 83: 110–123.

[23] Zhang, P., Lin, G., Liu, J., and Wang, W. (2016). “Response of multilayered transversely isotropic medium due to axisymmetric loads”. International Journal for Numerical and Analytical Methods in Geomechanics, 40: 827–864.

[24] Zhan, Y., Yao, H., Lu, Z., and Yu, D. (2014). “Dynamic analysis of slab track on multi-layered transversely isotropic saturated soils subjected to train loads”. Earthquake Engineering and Engineering Vibration, 13: 731–740.

[25] Anyaegbunam, A. (2014). “Complete Stresses and Displacements in a Cross-Anisotropic Half-Space Caused by a Surface Vertical Point Load”. International Journal of Geomechanics, 14: 171–181.

[26] Das, B. M., and Sobhan, K. (2013). “Principles of geotechnical engineering”. Cengage Learning, pp. 704.

[27] Brinkgreve, R. B. J. (2004). “PLAXIS: 3D Foundation”. Version 1. Balkema.