حذف پیریت از کنسانتره سنگ آهن با فلوتاسیون ستونی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر

2 دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر

چکیده

پیریت که به طور معمول همراه کانی­های اکسیدی آهن یافت می­شود به دلیل ایجاد مشکل در صنایع فولادسازی به عنوان کانی باطله و مزاحم در نظر گرفته می­شود. ذرات ریز پیریت در حضور کانی­های آهن­دار مانند مگنتیت و هماتیت، به طور کامل با جداکننده­های مغناطیسی بازیابی نمی­شوند. فلوتاسیون معکوس روشی موثر برای کاهش سولفور از کنسانتره جداکننده­های مغناطیسی است. امروزه ستون­های فلوتاسیون به دلیل هزینه­های سرمایه­ای و عملیاتی پایین­تر و توانایی تولید کنسانتره با عیار و بازیابی بالاتر در مقایسه با سلول­های مکانیکی، به طور وسیع در صنایع فرآوری آهن با هدف کاهش ناخالصی­ها مورد استقبال قرار گرفته­اند. هدف از این تحقیق، کاهش میزان سولفور ناشی از پیریت کنسانتره جداکننده های مغناطیسی خط بازیابی هماتیت مجتمع سنگ آهن گل­گهر از حدود 5/0 درصد به کمتر از  1/0 درصد با استفاده از فلوتاسیون ستونی است. به این منظور با انجام 26 آزمایش در قالب طراحی آزمایش­ها، تاثیر عوامل عملیاتی مهم مانند سرعت ظاهری گاز، ارتفاع کف، میزان کلکتور و کف­ساز، درصد جامد و pH پالپ برای دستیابی به هدف مورد بررسی قرار گرفت. نتایج نشان داد که فلوتاسیون معکوس ستونی روشی مناسب برای سولفورزدایی کانه­های آهن است به طوری که در شرایط بهینه، تولید محصولی با عیار سولفور 08/0 درصد با بازیابی آهن 5/99 درصد قابل دستیابی است. مقایسه عملکرد فلوتاسیون ستونی با مکانیکی در شرایط بهینه نشان می­دهد که برای حذف سولفور، فلوتاسیون ستونی کارایی جدایش بالاتری (در حدود 4 درصد) نسبت به فلوتاسیون مکانیکی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Pyrite removal from iron ore concentrate by column flotation

نویسندگان [English]

  • F. Nakhaei 1
  • M. Irannajad 2
1 PHD student, Department of Mining & Metallurgical Eng., Amirkabir University of Technology, Tehran, Iran
2 Associate Professor, Department of Mining & Metallurgical Eng., Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Pyrite is the most common and widely distributed sulfide mineral in the Earth’s crust and is usually associated with iron oxide minerals. It is generally considered a gangue mineral creating serious problems during the process of  steel production. In the presence of magnetite or hematite, the fine particles of pyrite respond inevitabley  to magnetic separation due to the bulk effect of the magnetic matrix. Therefore, these particles are not adequately rejected by magnetic separation. Reverse flotation is an effective method for sulfur reduction in iron ore processing. Recently, due to their lower capital and operational costs and their capability in concentrate production with higher grade and recovery, in comparison with mechanical cells, column flotation is widely used in iron ore industry. The aim of this research is to reduce the sulfur content of magnetic separators concentrate from 0.5% to lower than 0.1% using column flotation. For this, by carrying out 26 experiments, the effect of operational factors such as gas superficial velocity, froth height, collector and frother dosages, solid percent and pH were investigated.  The findings of this study reveal that the column flotation is an effective method for the iron ore desulfurization so that in an optimal condition, a product with sulfur grade of 0.08% and iron recovery of 99% can be obtained. The comparison of results showed that, in an optimal condition, the performance of column flotation was higher than mechanical flotation.

کلیدواژه‌ها [English]

  • Iron ore
  • Gole Gohar
  • Pyrite removal
  • Flotation column
[1]     Yellishetty, M., Ranjith, P. G., and Tharumarajah A. (2010). “Iron ore and steel production trends and material flows in the world: Is this really sustainable?”. Resources, Conservation and Recycling, 54: 1084–1094.

[2]     Araujo, A. C., Viana, P. R. M., and Peres, A. E. C. (2005). “Reagents in iron ores flotation”. Minerals Engineering, 18: 219–224.

[3]     Shrimali, K., and Miller, J. D. (2016). “Polysaccharide depressants for the reverse flotation of iron ore”. Transactions of The Indian Institute of Metals, 69(1): 83–95.

[4]     Rath, S. S., Sahoo, H., Das, S. K., Das, B., and Mishra B. K. (2014). “Influence of band thickness of banded hematite quartzite (BHQ) ore in flotation”. International Journal of Mineral Processing, 130: 48–55.

[5]     Filippov, L. O., Severov, V. V., and Filippova, I. V. (2014). “An overview of the beneficiation of iron ores via reverse cationic flotation”. International Journal of Mineral Processing, 127: 62–69.

[6]     Xiong, D., Liu, S., Chen, J. (1998). “New technology of pulsating high gradient magnetic separation”. International Journal of Mineral Processing, 54: 111–127.

[7]     Zhao, C., Yahui, Zh., and Yongdan, C. (2012). “Reverse flotation of quartz from magnetite ore with modified sodium oleate”, Mineral Processing and Extractive Metallurgy Review, 34(5): 320-330.

[8]     Bulatovic, S. M. (2007). “Handbook of flotation reagent- s: chemistry, theory and practice”. Amsterdam: Elsevier, pp. 22.

[9]     Thanasekaran, H., Kohmuench, J., and Christodoulou, L. (2013). “Column flotation of iron ore - status and advances”. Iron Ore, Western Australia, 1-14.

[10]  Viana, P. R. M., Silva, J. P., Rabelo, P. J. B., Coelho, A. G., and Silva, V. C. (1991). “Column flotation for the expansion of the flotation circuit at samarco mineracao”. Column 91, International Conference on Column Flotation, June 2-6, Sudbury, 89-95.

[11]  Nakhaei, F., Mosavi, M. R., Sam, A., Vaghei, Y. (2012). “Recovery and grade accurate prediction of pilot plant flotation column concentrate: neural network and statistical techniques”.International Journal of Mineral Processing, 110–111: 140– 154.

[12]  Cline, W., Connolly, L., and Grandy, G. (1974). “Marcona pyrrhotite flotation from magnetite”. Society for Mining, Metallurgy & Exploration (SME) Fall Meeting, September, Acapulco, Mexico, 22–25.

[13]  Chang, C. S., Cooke, S. R. B., and Iwasaki, I. (1954). “Flotation characteristics of pyrrhotite with xanthate”. Transactions of the Society of Mining Engineers of American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 199: 209–217.

[14]  lwasaki, I. (1999). “Iron ore flotation: Historical perspective and future prospects”. Proceedings of the Symposium, Advances in Flotation Technology, Society for Mining, Metallurgy & Exploration (SME) Annual Meeting, March 1-3, Denver, CO, pp. 231.

[15]  Woods, R. (1988). “Flotation of sulfide minerals”. In: P. Somasundaran and B. Moudgil (Editors), Reagents in Mineral Technology. Marcel Dekker, New York, NY, 39-77.

[16]  Finkelstein, N. P. (1997). “The activation of sulphide minerals for flotation: a review”. International Journal of Mineral Processing, 52: 81–120.

[17]  Fuerstenau, M. C., Kuhn, M. C. and Elgillani, D. A.
 (1986). “The role of dixanthogen in xanthate flotation of pyrite”. Transactions of the Society of Mining Engineers of American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 241: 148-156.

[18]  David, D., Larson, M., and Li, M. (2011). “Optimising Western Australia magnetite circuit design”. Proceedings of the Metallurgical Plant Design and Operating Strategies, Perth.

[19]  Arvidson, B., Klemetti, M., Knuutinen, T., Kuusisto, M., Man, Y. T., and Hughes-Narborough, C. (2013). “Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w”. Minerals Engineering, 50–51: 4–12.

[20]  Soltanmohammadi, V., Noaparast, M., Kohsari, A. H., and Zamani, F. (2011). “Influence of flotation parameters on decreasing sulfur and phosphorus contents in the Gol-E-Gohar iron ore concentrate”. Physicochemical Problems of Mineral Processing, 46: 173-190.

[21]  Soltanmohammadi, V., Noaparast, M., Kohsari, A. H., and Zamani, F. (2009). “Determination of optimum conditions to remove sulfur and phosphor from Gol-E-Gohar iron ore concentrate”. Iranian Journal of Science & Technology, Transaction B, Engineering, 33(B3): 267-278.

[22]  Jiang, C. L., Wang, X. H., Parekh, B. K., and Leonard, J. W. (1998). “The surface and solution chemistry of pyrite flotation with xanthate in the presence of iron ions”. Colloids and Surfaces A: Physicochemical and Engineer- ing Aspects, 136(1-2): 51-62.